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Abstract. We perform a complete analysis of isospin breaking in K → 2π amplitudes in chiral perturbation
theory, including both strong isospin violation (mu �= md) and electromagnetic corrections to next-to-
leading order in the low-energy expansion. The unknown chiral couplings are estimated at leading order in
the 1/Nc expansion. We study the impact of isospin breaking on CP conserving amplitudes and rescattering
phases. In particular, we extract the effective couplings g8 and g27 from a fit to K → ππ branching ratios,
finding small deviations from the isospin-limit case. The ratio Re A0/ Re A2 measuring the ∆I = 1/2
enhancement is found to decrease from 22.2 ± 0.1 in the isospin limit to 20.3 ± 0.5 in the presence of
isospin breaking. We also analyze the effect of isospin violation on the CP violation parameter ε′, finding
a destructive interference between three different sources of isospin violation. Within the uncertainties of
large-Nc estimates for the low-energy constants, the isospin violating correction for ε′ is below 15%.

1 Introduction

A systematic treatment of isospin violation in non-leptonic
weak interactions is needed for many phenomenological
applications. The generically small effects induced by elec-
tromagnetic corrections and by the quark mass difference
mu − md are enhanced in subdominant amplitudes with
∆I > 1/2 because of the ∆I = 1/2 rule. For one, a quan-
titative understanding of the ∆I = 1/2 rule itself is only
possible with isospin violating effects included. Another
area of application is CP violation in the K0–K0 system
where isospin breaking is crucial for a precision calcula-
tion of ε′/ε.

Isospin violation in K → 2π decays has already been
addressed in recent works [1–8]. In this paper, we reanalyze
the K → ππ decay amplitudes to perform a comprehensive
study of all isospin violating effects to next-to-leading order
in the low-energy expansion of the standard model. More
precisely, we shall work to first order in α and in mu −
md throughout, but to next-to-leading order in the chiral
expansion. In view of the observed octet dominance of
the non-leptonic weak interactions, we therefore calculate
to O(G8p

4, G8(mu − md)p2, e2G8p
2) and to O(G27p

4) for
octet and 27-plet amplitudes, respectively.

At this order, many a priori unknown low-energy con-
stants (LECs) appear. With few exceptions to be discussed
inSect. 5,we adopt leading large-Nc estimates for theLECs.
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CT2002-00311 (EURIDICE) and by Acciones Integradas,
Project No. 19/2003 (Austria), HU2002-0044 (MCYT, Spain)

The advantage is that we employ a systematic approxima-
tion scheme with solid theoretical foundation that can in
principle be carried through beyond leading order. On the
other hand, the importance of subleading large-Nc effects
is at present not known in general. We shall estimate the
uncertainties by varying the two scales entering those es-
timates: the renormalization scale for evaluating Wilson
coefficients (short-distance scale) and the chiral scale (long-
distance scale) at which the large-Nc results are supposed
to apply.

In performing electromagnetic corrections, a careful
analysis of radiative events is necessary as emphasized
in [5]. We shall perform such an analysis for the new KLOE
measurement [9] of the ratio of Γ (KS → π+π−[γ]) and
Γ (KS → π0π0) with a fully inclusive π+π−[γ] final state.
The KLOE result influences the phase difference χ0 − χ2
of the two isospin amplitudes strongly. Together with this
phase difference, the effective weak octet and 27-plet cou-
plings G8, G27 will be the primary output of our analysis.
With that output, several phenomenological issues can be
addressed such as the relation of the phases χ0, χ2 to the
s-wave pion–pion scattering phase shifts or the impact of
isospin breaking on ε′/ε.

The content of this paper is as follows. In the subsequent
section, we introduce the decay amplitudes and the relevant
effective chiral Lagrangians. The amplitudes at leading or-
der in the low-energy expansion are presented in Sect. 3.
The amplitudes at next-to-leading order are investigated in
Sect. 4, distinguishing between π0–η mixing and all other
contributions arising at that order. The amplitudes are di-
vided into various parts depending on the source of isospin
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violation. The local amplitudes of next-to-leading order
are explicitly given here. Section 5 analyses the LECs at
leading order in 1/Nc. To determine weak and electroweak
LECs for Nc → ∞, one needs input for the strong [up to
O(p6)] and electromagnetic couplings [up to O(e2p2)], in
addition to the relevant Wilson coefficients. We discuss to
which extent the necessary information is available. The
numerical calculations of the various amplitudes to next-
to-leading order in chiral perturbation theory (CHPT) are
presented in Sect. 6. Dispersive and absorptive components
of the loop amplitudes are given together with CP -even
and CP -odd parts of the local amplitudes. Those ampli-
tudes are then used in Sect. 7 to extract the lowest-order
non-leptonic couplings G8, G27 and the phase difference
χ0 − χ2 from K → ππ data. We compare those quantities
at lowest and next-to-leading order, the latter with and
without isospin violation included. With this information,
we then analyze the relation of the phase difference χ0−χ2
to the corresponding difference of ππ phase shifts. In Sect. 8
we discuss isospin violating contributions to the parameter
ε′ of direct CP violation in K0 → ππ decays. Section 9 con-
tains our conclusions. Various technical aspects are treated
in several appendices: next-to-leading-order effective chiral
Lagrangians; explicit loop amplitudes; an alternative con-
vention for LECs of lowest order; details for the analysis
of the phase difference.

2 Non-leptonic weak interactions in CHPT

In this section, we define our notation for the K → ππ
amplitudes and we introduce the relevant effective chi-
ral Lagrangians.

2.1 Decay amplitudes

Using the isospin decomposition of two-pion final states,
we write the K → ππ amplitudes in the charge basis in
terms of three amplitudes1 A∆I that are generated by the
∆I component of the electroweak effective Hamiltonian in
the limit of isospin conservation:

A+− = A1/2 +
1√
2

(
A3/2 + A5/2

)
,

A00 = A1/2 −
√

2
(
A3/2 + A5/2

)
,

A+0 =
3
2

(
A3/2 − 2

3
A5/2

)
. (2.1)

In the standard model, the ∆I = 5/2 piece is absent in the
isospin limit, thus reducing the number of independent
amplitudes to two. Each amplitude An has a dispersive
(Disp An) and an absorptive (Abs An) component. In order

1 We shall use the invariant amplitudes An defined as follows:

〈(ππ)n|T ei
∫
dx L(x)|K〉 = i(2π)4δ(4)(Pf − Pi) × (−i An) .

to carry out phenomenological applications and to keep the
notation as close as possible to the standard analysis in
the isospin limit, we write

A0eiχ0 = A1/2,

A2eiχ2 = A3/2 + A5/2,

A+
2 eiχ+

2 = A3/2 − 2
3
A5/2, (2.2)

where we explicitly separate out the phases χI . In the limit
of CP conservation, the amplitudes A0, A2 and A+

2 are real
and positive. In the isospin limit, the AI are the standard
isospin amplitudes and the phases χI are identified with
the s-wave ππ scattering phase shifts δI(

√
s = MK).

For the phenomenological analysis (see Sects. 7 and 8),
we therefore adopt the following parametrization of the
K → ππ amplitudes:

A+− = A0eiχ0 +
1√
2
A2eiχ2 ,

A00 = A0eiχ0 −
√

2A2eiχ2 ,

A+0 =
3
2
A+

2 eiχ+
2 . (2.3)

This parametrization holds for the infrared finite ampli-
tudes where the Coulomb and infrared parts (defined in
Sect. 4) have been removed from A+−.

In the absence of electromagnetic interactions A5/2 = 0
and therefore A2 = A+

2 . To set the stage, we extract the
isospin amplitudes A0, A2 and the phase difference χ0 −χ2
from a fit to the three K → ππ branching ratios [9, 10]:

A0 = (2.715 ± 0.005) · 10−7 GeV,

A2 = (1.225 ± 0.004) · 10−8 GeV,

χ0 − χ2 = (48.6 ± 2.6)◦. (2.4)

These values hold in the isospin limit except that the phys-
ical pion masses have been used for phase space. The sub-
stantial reduction in the phase difference χ0 − χ2 (from
about 58◦ during the past 25 years [10]) is entirely due to
the new KLOE measurement [9] of the ratio

Γ
(
KS → π+π−(γ)

)
/Γ (KS → π0π0).

2.2 Effective chiral Lagrangians

In the presence of isospin violation, the physics of the
K → ππ decays involves an interplay of the non-leptonic
weak, the strong and the electromagnetic interactions. Con-
sequently, a number of effective Lagrangians are needed to
describe those transitions. We use the well-known effec-
tive Lagrangian for strong interactions to O(p6) [11–13],
the non-leptonic weak Lagrangian to O(GFp4) [14–17], the
electromagnetic Lagrangian to O(e2p2) [18,19] and, finally,
the electroweak Lagrangian to O(e2G8p

2) [20–22].
Only the leading-order (LO) Lagrangians are written

down explicitly here. The relevant parts of the next-to-
leading-order (NLO) Lagrangians can be found in Ap-
pendix A along with further details.
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2.2.1 Strong Lagrangian

We have

Lstrong =
F 2

4
〈DµUDµU† + χU† + χ†U〉

+
∑

i

LiO
p4

i +
∑

i

XiF
−2Op6

i . (2.5)

F is the pion decay constant in the chiral limit, the SU(3)
matrix field U contains the pseudoscalar fields and the
scalar field χ accounts for explicit chiral symmetry break-
ing through the quark masses mu, md, ms. The relevant
operators Op4

i are listed in Appendix A. The LECs Xi of
O(p6) will only enter through the large-Nc estimates of the
electroweak couplings in Sect. 5. 〈A〉 denotes the SU(3) fla-
vor trace of A.

2.2.2 Non-leptonic weak Lagrangian

We have

Lweak = G8F
4 〈λDµU†DµU〉

+ G27F
4
(

Lµ23L
µ
11 +

2
3
Lµ21L

µ
13

)
+

∑
i

G8NiF
2O8

i

+
∑

i

G27DiF
2O27

i + h.c. (2.6)

The matrix Lµ = iU†DµU represents the octet of V − A
currents to lowest order in derivatives; λ = (λ6 − iλ7)/2
projects onto the s̄ → d̄ transition. Instead of G8, G27 we
will also use the dimensionless couplings g8, g27 defined as

G8,27 = −GF√
2
VudV

∗
usg8,27. (2.7)

One of the main tasks of this investigation will be the
determination of g8, g27 in the presence of isospin violation
to NLO. The LECs Ni, Di of O(GFp4) are dimensionless.
The monomials O8

i , O27
i relevant for K → 2π transitions

can be found in Appendix A.

2.2.3 Electromagnetic Lagrangian

We have

Lelm = e2ZF 4〈QU†QU〉 + e2
∑

i

KiF
2Oe2p2

i . (2.8)

The quark charge matrix is given by

Q = diag(2/3, −1/3, −1/3).

The lowest-order LEC can be determined from the pion
mass difference to be Z � 0.8. The NLO LECs Ki are
dimensionless and the relevant monomials Oe2p2

i can again
be found in Appendix A.

2.2.4 Electroweak Lagrangian

We have

LEW = e2G8gewkF
6 〈λU†QU〉

+ e2
∑

i

G8ZiF
4 OEW

i + h.c. (2.9)

The value of the LO coupling gewk is discussed in Sect. 5.
The LECs Zi are dimensionless and the associated mono-
mials OEW

i are collected in Appendix A. We do not include
isospin violating corrections for 27-plet amplitudes.

The low-energy couplings Li, Ni, Di, Ki, Zi are in gen-
eral divergent. They absorb the divergences appearing in
the one-loop graphs via the renormalization

Li = Lr
i (νχ) + ΓiΛ(νχ),

Ni = Nr
i (νχ) + niΛ(νχ),

Di = Dr
i (νχ) + diΛ(νχ),

Ki = Kr
i (νχ) + κiΛ(νχ),

Zi = Zr
i (νχ) + ziΛ(νχ), (2.10)

where νχ is the chiral renormalization scale and the diver-
gence is included in the factor

Λ(νχ) =
νd−4

χ

(4π)2

{
1

d − 4
− 1

2
[log(4π) + Γ ′(1) + 1]

}
.

(2.11)
The divergent parts of the couplings are all known [11,15,
16,19,22] and they allow for a non-trivial check of the loop
calculation. On the other hand, many of the renormalized
LECs contributing to the decay amplitudes are not known.
Our strategy will be to use LO large-Nc estimates. A com-
prehensive discussion of all relevant LECs will be presented
in Sect. 5.

3 Amplitudes at leading order

With the most general effective chiral Lagrangian of the
previous section, we can now proceed with the construction
of physical amplitudes. At LO [O(GFp2, e2G8p

0)] in the
low-energy expansion, the procedure is straightforward:
chiral power counting tells us that the amplitudes are ob-
tained by summing all tree-level Feynman diagrams with
one insertion from either Lweak of O(GFp2) or LEW of
O(e2G8p

0), at most one insertion of Lelm of O(e2p0) and
any number of insertions from the O(p2) part of the strong
Lagrangian (2.5).

In addition to contributions proportional to the elec-
troweak coupling gewk, isospin breaking occurs also in the
pseudoscalar mass matrix, generating in particular non-
diagonal terms in the fields (π3, π8) (π0–η mixing). Upon
diagonalizing the tree-level mass matrix one obtains the
relation between the LO mass eigenfields (π0, η) and the
original fields (π3, π8) (to first order in mu − md):(

π3

π8

)
=

(
1 −ε(2)

ε(2) 1

) (
π0

η

)
LO

, (3.1)
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with the tree-level π0–η mixing angle ε(2) given by

ε(2) =
√

3
4

md − mu

ms − m̂
, (3.2)

where m̂ stands for themeanvalue of the light quarkmasses,

m̂ =
1
2
(mu + md). (3.3)

The physical amplitudes are then obtained by consider-
ing the relevant Feynman graphs with insertions from the
LO effective Lagrangian expressed in terms of the LO
mass eigenfields.

Apart from π0–η mixing, isospin breaking manifests
itself also in the mass differences between charged and
neutral mesons, due to both the light quark mass difference
and electromagnetic contributions. We choose to express
all masses in terms of those of the neutral kaon and pion
(denoted from now on as MK and Mπ, respectively). In
terms of quarkmasses andLOcouplings (B0 is related to the
quark condensate in the chiral limit by 〈0|qq|0〉 = −F 2B0),
the pseudoscalar meson masses read:

M2
π = 2B0m̂,

M2
π± = M2

π + 2e2ZF 2,

M2
K = B0 (ms + md) ,

M2
K± = M2

K − 4ε(2)
√

3
B0(ms − m̂) + 2e2ZF 2,

M2
η =

1
3

(
4M2

K − M2
π

)
− 8ε(2)

3
√

3
B0(ms − m̂). (3.4)

We are now in the position to write down the three inde-
pendent amplitudes relevant for K → ππ decays. In the
physical “charge” basis the LO amplitudes are

A+− =
2
3

√
2G27F

(
M2

K − M2
π

)
+

√
2G8F

[
M2

K − M2
π − e2F 2 (gewk + 2Z)

]
,

A00 = −
√

2G27F
(
M2

K − M2
π

)
+

√
2G8F

(
M2

K − M2
π

) (
1 − 2√

3
ε(2)

)
,

A+0 =
5
3
G27F

(
M2

K − M2
π

)
(3.5)

+ G8F

[(
M2

K − M2
π

) 2√
3
ε(2) − e2F 2 (gewk + 2Z)

]
.

We recall that we do not include isospin violation for the
27-plet amplitudes. In the isospin basis, more convenient
for phenomenological applications, the LO amplitudes are
given by (see (2.1) for the relation between the two bases)

A1/2 =
√

2
9

G27F
(
M2

K − M2
π

)
+

√
2G8F

[(
M2

K − M2
π

) (
1 − 2

3
√

3
ε(2)

)

− 2
3
e2F 2 (gewk + 2Z)

]
,

A3/2 =
10
9

G27F
(
M2

K − M2
π

)
+ G8F

[(
M2

K − M2
π

) 4
3
√

3
ε(2) − 2

3
e2F 2 (gewk + 2Z)

]
,

A5/2 = 0. (3.6)

The parameter F can be identified with the pion decay con-
stant Fπ at this order. The effect of strong isospin break-
ing (proportional to ε(2)) is entirely due to π0–η mixing
at LO. Electromagnetic interactions contribute through
mass splitting (terms proportional to Z) and insertions
of gewk. As a consequence of imposing CPS symmetry [23]
on the effective Lagrangian, electromagnetic corrections to
the octet weak Hamiltonian do not generate a ∆I = 5/2
amplitude at LO in the quark mass expansion.

4 Amplitudes at next-to-leading order

Let us now outline the construction of the amplitudes at
NLO [O(GFp4, e2G8p

2)]. As always, chiral power counting
is the guiding principle: it tells us that both one-loop and
tree-level diagrams now contribute. In the one-loop dia-
grams, one has to consider one insertion from either Lweak
of O(GFp2) or LEW of O(e2G8p

0), at most one insertion
of Lelm of O(e2p0) and any number of insertions from the
O(p2) part of the strong Lagrangian, with the LO effective
Lagrangians expressed in terms of the LO mass eigenfields.
For the tree-level diagrams, one has to apply one insertion
from the NLO effective Lagrangian and any number of in-
sertions from the LO Lagrangian. The strangeness chang-
ing vertex can come from either the LO or NLO effective
Lagrangians. This straightforward prescription leads to a
large number of explicit diagrams for each mode, due to
several topologies and several possibilities to insert isospin
breaking vertices from the LO effective Lagrangian (in the
weak vertex, in the strong vertex, in the internal propaga-
tors, in the external legs). We begin with the well-defined
class of NLO corrections to the pseudoscalar meson prop-
agators, focusing afterwards on the other corrections.

4.1 π0–η mixing at NLO

As in the LO case, it is convenient to first analyze isospin
breaking in the two-point functions (inverse propagators)
and to define renormalized fields in which the propagator
has a diagonal form with unit residues at the poles2. At
NLO two main new features arise:
(1) Not only the (π3, π8) mass matrix acquires off-diagonal
matrix elements, but also the purely kinetic part of the
propagator does so.
(2) Electromagnetic interactions contribute to this phe-
nomenon, in addition to the up–down mass splitting.

2 This way, no further wave function renormalization effect
has to be included.
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Results on NLO mixing effects induced by quark mass
splitting already appear in [8, 11, 24], while electromag-
netically induced effects were considered in [25, 26]. Here
we follow the formalism outlined in [24], treating strong
and electromagnetic effects simultaneously. In the LO mass
eigenfield basis, the NLO inverse propagator (an eight-by-
eight matrix) can be written as follows:

∆̂(q2)−1 = q21 − M̂2 − Π̂(q2),

Π̂(q2) = Ĉq2 + D̂, (4.1)

where M̂2 is the diagonal LO mass matrix and Ĉ, D̂ are
symmetric matrices, which are diagonal except for their
restriction to the (π0, η) subspace. The relation between
the LO and NLO mass eigenfields (collected in a vector
φa) can be summarized as follows:

φLO =

(
1 +

Ĉ

2
+ Ŵ

)
φNLO, (4.2)

where Ŵ is an antisymmetric matrix, non-vanishing only
in the (π0, η) subspace. Except for the reduction to this
subspace, (4.2) is just the familiar field renormalization,
with wave function renormalization given by Zi = 1 +
Ĉii. Focusing on the (π0, η) sector, we note that Ŵ is
characterized by a single entry called ε(4) [24]. This quantity
isUVfinite and represents a natural generalization toO(p4)
of the tree-level mixing angle ε(2). Explicitly, the relation
between the (π0, η) mass eigenfields at LO and NLO is
given by(

π0

η

)
LO

=

(
1 + Ĉπ0π0/2 Ĉηπ0/2 − ε(4)

Ĉηπ0/2 + ε(4) 1 + Ĉηη/2

)(
π0

η

)
NLO

.

(4.3)
Equations (3.1) and (4.3) give the full relation between the
original fields (π3, π8) and the NLO mass eigenfields. We do
not report here the factors Ĉab, as they are UV divergent
and make sense only in combination with other terms in
the full amplitudes. We do report, however, the expression
for ε(4) because the replacement ε(2) → ε(2) + ε(4) in (3.5)
and (3.6) gives rise to awell-defined (UVfinite) subset of the
NLO corrections. Breaking up ε(4) into contributions from
strong (S) and electromagnetic (EM) isospin breaking,

ε(4) = ε
(4)
S + ε

(4)
EM,

one gets

ε
(4)
S = − 2ε(2)

3(4πF )2(M2
η − M2

π)

×
{

(4π)264 [3L7 + Lr
8(νχ)] (M2

K − M2
π)2

− M2
η (M2

K − M2
π) log

M2
η

ν2
χ

+ M2
π(M2

K − 3M2
π) log

M2
π

ν2
χ

− 2M2
K(M2

K − 2M2
π) log

M2
K

ν2
χ

− 2M2
K(M2

K − M2
π)

}
,

ε
(4)
EM =

2
√

3α

108π(M2
η − M2

π)

×
{

−9M2
KZ

(
log

M2
K

ν2
χ

+ 1
)

+ 2M2
K(4π)2 [2Ur

2 (νχ) + 3Ur
3 (νχ)] (4.4)

+ M2
π(4π)2 [2Ur

2 (νχ) + 3Ur
3 (νχ) − 6Ur

4 (νχ)]
}

.

The electromagnetic LECs Ui are linear combinations of
the Ki (defined in Sect. 5.5).

4.2 Remaining NLO contributions: a guided tour

Having dealt with the propagator corrections in the previ-
ous section, we now describe the remaining contributions
to the K → ππ amplitudes at NLO, starting with the one-
loop terms. There are two main classes of contributions:
loops involving only pseudoscalar mesons (Fig. 1) and loops
involving virtual photons (Fig. 2). In the isospin limit, con-
tributions to the amplitudes arise from the topologies of
Fig. 1, by inserting the LO weak vertices proportional to G8
or G27 in the Lagrangians (2.6) and (2.9). Given the large
suppression ofG27/G8, we consider in thiswork only isospin
breaking effects generated through the octet component of
the effective Lagrangian. We are therefore interested in the
terms proportional to ε(2)G8 (strong isospin breaking) and
e2G8 (electromagnetic isospin breaking).

Strong isospin breaking terms (ε(2)G8) at NLO come
from several sources:
(1) Explicit terms ∼ (mu − md) in the strong vertices of
Fig. 1, obtained by expressing Lstrong in terms of the LO
mass eigenfields.
(2) Mass corrections in the internal propagators, for which
we use the LO diagonal form (and the corresponding mass
relations of (3.4)).
(3) Mass corrections arising when external momenta are
taken on-shell (using again (3.4)).

The combination of these effects leads in principle to
non-linear contributions in the isospin breaking parameter.

Fig. 1. Topologies for purely mesonic loop diagrams contribut-
ing to K → ππ: the filled circles indicate ∆S = 1 vertices of
lowest order. Wave function renormalization diagrams are not
shown
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Fig. 2. Topologies for meson-photon loop diagrams contribut-
ing to K → ππ: the filled circles indicate ∆S = 1 octet vertices
of lowest order

Fig. 3. Diagrams for NLO local contributions: the filled square
denotes a NLO vertex

We have chosen to expand the final expressions for the
amplitudes to first order in ε(2) .

Electromagnetic isospin breaking terms (e2G8) at NLO
can be naturally divided into three categories:
(1) e2ZG8: these arise exactly in the same way as the strong
isospin breaking terms (see discussion above).
(2) e2G8gewk: these arise from insertions of the gewk vertices
of LEW in the topologies of Fig. 1, keeping all other contri-
butions (masses and strong vertices) in the isospin limit.
(3) e2G8: these arise from the photonic diagrams of Fig. 2,
using the LO weak vertices of Lweak proportional to G8.
This class of contributions to A+− is infrared divergent.
We regulate the infrared divergence by means of a ficti-
tious photon mass Mγ . The cancellation of infrared diver-
gences only happens when one considers an inclusive sum
of K → ππ and K → ππγ decay rates and we postpone
details on this point to Sect. 7. At this stage, we split the
photonic correction to A+− into an “infrared component”
AIR

+−(Mγ) (to be treated in combination with real photons)
and a structure dependent part A(γ)

+−, which is infrared fi-
nite and has to be used together with the non-photonic
amplitudes in (2.1). Clearly, an arbitrary choice appears
here as one can shift infrared finite terms from A(γ)

+− to
AIR

+−(Mγ). This also implies that the isospin amplitudes
all depend on this choice. The observables, however, are
only affected by this ambiguity at order α2. AIR

+−(Mγ) has
the following structure:

AIR
+−(Mγ) =

√
2G8F

(
M2

K − M2
π

)
αB+−(Mγ), (4.5)

in terms of the function B+−(Mγ) reported in Appendix B.
This concludes our description of one-loop contribu-

tions to K → ππ amplitudes. The NLO local contribu-
tions arise from tree-level graphs with insertions of one
NLO vertex and any number of LO vertices, according to
the topologies depicted in Fig. 3.

4.3 Structure of the amplitudes

Having identified the various diagrammatic contributions
to the physical amplitudes, we now introduce a general
parametrization that explicitly separates isospin conserv-
ing and isospin breaking parts and allows one to keep track
of the various sources of isospin breaking. Let n be the la-
bel for any amplitude. Then, including the leading isospin
breaking corrections (proportional to G8), one has

An = G27Fπ(M2
K − M2

π)A(27)
n

+ G8Fπ

{(
M2

K − M2
π

) [
A(8)

n + ε(2)A(ε)
n

]
−e2F 2

π

[
A(γ)

n + ZA(Z)
n + gewkA(g)

n

]}
. (4.6)

The meaning of the amplitudes A(X)
n can be inferred from

the superscript X. A(8)
n , A(27)

n represent the octet and 27-
plet amplitudes in the isospin limit. A(ε)

n represents the
effect of strong isospin breaking, while the electromagnetic
contribution is split into a part induced by photon loops
A(γ)

n and the parts induced by insertions of Z and gewk

vertices (A(Z)
n and A(g)

n , respectively).
At the order we are working, each of the amplitudes

A(X)
n can be decomposed as follows:

A(X)
n =

a
(X)
n

[
1 + ∆LA(X)

n + ∆CA(X)
n

]
if a

(X)
n �= 0,

∆LA(X)
n + ∆CA(X)

n if a
(X)
n = 0,

(4.7)
with

a(X)
n : LO contribution [ (3.5) and (3.6)] ,

∆LA(X)
n : NLO loop correction,

∆CA(X)
n : NLO local correction.

The amplitudes a
(X)
n , ∆LA(X)

n and ∆CA(X)
n are dimension-

less and we have chosen to normalize the NLO contribu-
tions to the LO contributions whenever possible. Moreover,
in (4.6) we have traded the constant F for Fπ, the physical
pion decay constant at NLO. The relation between the two
is given explicitly by [11,27]

F = Fπ

{
1 − 4

F 2

[
Lr

4(νχ)
(
M2

π + 2M2
K

)
+ Lr

5(νχ)M2
π

]
+

1
2(4π)2F 2

[
2M2

π log
M2

π

ν2
χ

+ M2
K log

M2
K

ν2
χ

]

+
2ε(2)
√

3

(
M2

K − M2
π

)
(4.8)

×
[
8Lr

4(νχ)
F 2 − 1

2(4π)2F 2

(
1 + log

M2
K

ν2
χ

)]}
.

Both ∆LA(X)
n and ∆CA(X)

n individually are UV divergent
and scale dependent. Only in their sum the UV divergence
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and the scale dependence cancel, providing a valuable check
on the calculation. The explicit form of the various loop
contributions is given in Appendix B while the local am-
plitudes are reported in the next subsection.

4.4 Local amplitudes

The NLO K → ππ local amplitudes receive contributions
from the NLO couplings Li, Ni, Di, Ki, Zi in the effective
Lagrangians of Sect. 2. Following [28], it is convenient to
define the combinations

∆̃C = −M2
K

F 2 (4Lr
5 + 32Lr

4) − M2
π

F 2 (12Lr
5 + 16Lr

4) ,

∆̃
(ew)
C = −M2

K

F 2 (4Lr
5 + 48Lr

4) − M2
π

F 2 (20Lr
5 + 24Lr

4) .

(4.9)

In terms of the quantities defined above, the finite parts
of the NLO local amplitudes have the form reported be-
low. In this section we use the notation Di, Ni, Zi as a
shorthand for the ratios of NLO to LO chiral couplings
(g8Di)/g8, (g8Ni)/g8, (g8Zi)/g8.

4.4.1 ∆I = 1/2 amplitudes

We have

∆CA(27)
1/2 = ∆̃C +

M2
K

F 2 (Dr
4 − Dr

5 − 9Dr
6 + 4Dr

7)

+
2 M2

π

F 2 (−6Dr
1 − 2Dr

2 + 2Dr
4 + 6Dr

6 + Dr
7),

∆CA(8)
1/2 = ∆̃C − 2M2

K

F 2 (−Nr
5 + 2Nr

7 − 2Nr
8 − Nr

9 )

− 2M2
π

F 2 (−2Nr
5 − 4Nr

7 − Nr
8 + 2Nr

10 + 4Nr
11 + 2Nr

12),

∆CA(ε)
1/2 = ∆̃C − (M2

K − M2
π)

F 2 (96Lr
4 + 32(3Lr

7 + Lr
8))

− 2M2
K

F 2 (Nr
5 + 6Nr

6 + 12Nr
7 − 8Nr

8 − Nr
9

−4Nr
10 − 8Nr

12 − 12Nr
13)

+
2M2

π

F 2 (14Nr
5 + 6Nr

6 + 24Nr
7 − 5Nr

8

−26Nr
10 − 24Nr

11 − 10Nr
12 − 12Nr

13),

∆CA(Z)
1/2 = ∆̃

(ew)
C − 4M2

K

F 2 (2Nr
7 − Nr

8 − Nr
9 )

+
2M2

π

F 2 (2Nr
5 + 4Nr

7 + Nr
8 ),

∆CA(g)
1/2 = ∆̃

(ew)
C ,

∆CA(γ)
1/2 =

2
√

2
3

[
M2

K

F 2 (6Ur
1 + 4Ur

2 + Ur
3 )

− M2
π

6F 2 (36Ur
1 + 22Ur

2 + 3Ur
3 + 2Ur

4 )

+

(
M2

K − M2
π

)
6F 2 (−8Zr

3 + 24Zr
4 − 9Zr

5 − 6Zr
7

+3Zr
8 + 3Zr

9 + 2Zr
10 − 2Zr

11 − 2Zr
12) (4.10)

+
M2

K

F 2 (2Zr
1 + 4Zr

2) +
M2

π

F 2 (4Zr
1 + 2Zr

2 − Zr
6)

]
.

4.4.2 ∆I = 3/2 amplitudes

We have

∆CA(27)
3/2 = ∆̃C +

M2
K

F 2 (Dr
4 − Dr

5 + 4Dr
7)

+
2M2

π

F 2 (−2Dr
2 + 2Dr

4 + Dr
7),

∆CA(ε)
3/2 = ∆̃C −

32
(
M2

K − M2
π

)
F 2 (3Lr

7 + Lr
8)

− 2M2
K

F 2 (Nr
5 + 6Nr

6 − 2Nr
8 − Nr

9

−4Nr
10 − 8Nr

12 − 12Nr
13)

+
2M2

π

F 2 (2Nr
5 + 6Nr

6 + Nr
8 − 2Nr

10 − 10Nr
12 − 12Nr

13),

∆CA(Z)
3/2 = ∆̃

(ew)
C +

M2
K

5F 2 (12Nr
5 − 16Nr

7 + 20Nr
8 + 8Nr

9 )

+
M2

π

5F 2 (8Nr
5 + 16Nr

7 + 10Nr
8 + 12Nr

9 ) ,

∆CA(g)
3/2 = ∆̃

(ew)
C ,

∆CA(γ)
3/2 =

2
3

[
−4M2

K

5F 2 Ur
3 − M2

π

F 2

(
2
3
Ur

2 +
1
5
Ur

3 − 2
3
Ur

4

)
+

M2
K − M2

π

3F 2

(
−4Zr

3 +
24
5

Zr
4 − 3Zr

8 − 3Zr
9

−2Zr
10 − 8

5
Zr

11 − 8
5
Zr

12

)
+

M2
K

F 2 (2Zr
1 + 4Zr

2 − Zr
6) +

M2
π

F 2 (4Zr
1 + 2Zr

2)
]

. (4.11)

4.4.3 ∆I = 5/2 amplitude

We have

∆CA(Z)
5/2 =

4
(
M2

K − M2
π

)
15F 2 (−12Nr

5 − 24Nr
7 + 12Nr

9 ) ,

∆CA(γ)
5/2 =

2
(
M2

K − M2
π

)
45F 2 (4.12)

×(−18Ur
3 + 36Zr

4 + 18Zr
11 + 18Zr

12).
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5 LECs at leading order in 1/Nc

Owing to the presence of very different mass scales (Mπ <
MK < Λχ 	 MW ), the gluonic corrections to the un-
derlying flavor changing transition are amplified by large
logarithms. The short-distance logarithmic corrections can
be summed up with the use of the operator product ex-
pansion [29] and the renormalization group [30], all the
way down to scales µSD < mc. One gets in this way an
effective ∆S = 1 Lagrangian, defined in the three-flavor
theory [31–34],

L∆S=1
eff = −GF√

2
VudV

∗
us

∑
i

Ci(µSD)Qi(µSD), (5.1)

which is a sum of local four-fermion operators Qi, con-
structed with the light degrees of freedom (m < µSD),
modulated by Wilson coefficients Ci(µSD) which are func-
tions of the heavy masses (M > µSD) and CKM parame-
ters:

Ci(µSD) = zi(µSD) + τyi(µSD),

τ = − VtdV
∗
ts

VudV
∗
us

. (5.2)

The low-energy electroweak chiral Lagrangian arises from
the bosonization of the short-distance Lagrangian (5.1) be-
low the chiral symmetry breaking scale Λχ. Chiral symme-
try fixes the allowed operators, at a given order in momenta,
but the calculation of the corresponding CHPT couplings
is a difficult non-perturbative dynamical question, which
requires to perform the matching between the two effective
field theories.

The 1/Nc expansion provides a systematic approxima-
tion scheme to this problem. At leading order in 1/Nc the
matching between the three-flavor quark theory and CHPT
can be done exactly because the T -product of two color-
singlet quark currents factorizes. Since quark currents have
well-known realizations in CHPT the hadronization of the
weak operators Qi can then be done in a straightforward
way. As a result, the electroweak chiral couplings depend
upon strong and electromagnetic low-energy constants of
order p2, p4, p6 and e2p2, respectively.

5.1 Weak couplings of O(GFp2), O(e2G8p0)

At lowest-order [O(GFp2), O(e2G8p
0)], the chiral couplings

of the non-leptonic electroweak Lagrangians (2.6) and (2.9)
have the following large-Nc values:

g∞
8 = −2

5
C1(µSD) +

3
5
C2(µSD) + C4(µSD)

− 16L5B(µSD)C6(µSD),

g∞
27 =

3
5
[C1(µSD) + C2(µSD)],

(e2g8gewk)∞ = −3B(µSD)C8(µSD) (5.3)

− 16
3

B(µSD)C6(µSD)e2(K9 − 2K10).

The operators Qi (i �= 6, 8) factorize into products of
left- and right-handed vector currents, which are renor-
malization-invariant quantities. Thus, the large-Nc factor-
ization of these operators does not generate any scale de-
pendence. The only anomalous dimensions that survive for
Nc → ∞ are the ones corresponding to Q6 and Q8 [35].
These operators factorize into color-singlet scalar and pseu-
doscalar currents, which are µSD dependent. The CHPT
evaluation of the scalar and pseudoscalar currents pro-
vides, of course, the right µSD dependence, since only phys-
ical observables can be realized in the low-energy theory.
What one actually finds is the chiral realization of the
renormalization-invariant products mq q̄(1, γ5)q. This gen-
erates the factors

B(µSD) ≡
(

B2
0

F 2

)∞
=

[
M2

K

(ms + md)(µSD)Fπ

]2

×
[
1 − 16M2

K

F 2
π

(2L8 − L5) +
8M2

π

F 2
π

L5

+
8(2M2

K + M2
π)

F 2
π

(3L4 − 4L6)
]

(5.4)

in (5.3), which exactly cancel [35–39] the µSD dependence
of C6,8(µSD) at large Nc. There remains a dependence at
next-to-leading order.

Explicitly, the large-Nc expressions imply3

g∞
8 =

(
1.10 ± 0.05(µSD) ± 0.08(L5) ± 0.05(ms)

)
+ τ

(
0.55 ± 0.15(µSD) ± 0.20(L5)

+0.25
−0.16(ms)

)
,

g∞
27 = 0.46 ± 0.01(µSD),

(g8 gewk)∞ =
(
−1.37 ± 0.86(µSD) ± 0.25(Ki)

+0.57
−0.35(ms)

)
− τ

(
21.7 ± 4.5(µSD) ± 1.0(Ki)

+9.1
−5.6(ms)

)
,

(5.5)

where the first uncertainty has been estimated by varying
the renormalization scale µSD between 0.77 and 1.3 GeV,
the second one reflects the error on the strong LECs of
order p4 and e2p2, and the third indicates the uncertainty
induced by ms [40] which has been taken in the range [28]
(ms + md)(µSD = 1 GeV) = (156 ± 25) MeV. While the
CP -odd component of gewk is dominated by the electroweak
penguin contribution (proportional to τy8(µSD)), the CP -
even part receives contributions of similar size from both
strong (Q6) and electroweak (Q8) penguin operators. Its
large uncertainty within this approach reflects the GIM
mechanism (z8(µSD > mc) = 0). For the CP -even com-
ponent, there exists an independent estimate, consistent
with the one given here within the large uncertainties:

3 According to the discussion presented in the following
subsections, we use here Lr

5(Mρ) = (1.0 ± 0.3) · 10−3 and
(Kr

9 − 2Kr
10)(Mρ) = −(9.3 ± 4.6) · 10−3.
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Re(g8gewk)
Re g8

=

{
−0.99 ± 0.30 [4],

−1.24 ± 0.77(µSD) ± 0.40(L5,Ki) [Eq. (5.5)].
(5.6)

In this work we shall always use the latter value, in order
to perform a consistent analysis at leading order in 1/Nc.

Finally, the large-Nc matching also produces the so-
called weak mass term (see Appendix A for notation):

Lwmt = G′
8F

4〈λχU
+〉 + h.c., (5.7)

with

G′
8 = −GF√

2
VudV

∗
usg

′
8,

(g′
8)

∞ = −16
(

L8 +
1
2
H2

)
B(µSD)C6(µSD). (5.8)

We eliminate this term with an appropriate field redefini-
tion [15,23,41], of the form

U → eiαUeiβ , (5.9)

where the chiral rotation parameters (α and β) are pro-
portional to G′

8. When applied to the strong effective La-
grangians of order p4 and e2p2, the above redefinition gen-
erates monomials of the NLO Lagrangians of order G8p

4

and e2G8p
2. The corresponding contributions to the cou-

plings g8Ni (of the form Ln × (L8 + 1/2 H2)) and g8Zi

(of the form Kn × (L8 + 1/2 H2)) need to be added to the
results obtained by direct matching at large-Nc. The com-
plete results (reported in the next section) are independent
of the unphysical LEC H2 of O(p4) [11].

5.2 Weak couplings of O(GFp4), O(e2G8p2)

The large-Nc matching at the next-to-leading chiral order
fixes the couplings G8Ni, G27Di and G8Zi of the non-
leptonic weak and electroweak Lagrangians (2.6) and (2.9).
The operators Q3 and Q5 start to contribute at O(GFp4),
while the electroweak penguin operators Q7, Q9 and Q10
make their first contributions at O(e2G8p

2). The contribu-
tions from the operator Q6 at O(G8p

4) involve the strong
CHPT Lagrangian of O(p6) [13] (to avoid confusion with
the Wilson coefficients Ci, the corresponding dimensionless
couplings [42] are denoted here as Xi). With the definitions

C̃1(µSD) = −2
5
C1(µSD) +

3
5
C2(µSD) + C4(µSD), (5.10)

C̃2(µSD) =
3
5
C1(µSD) − 2

5
C2(µSD) + C3(µSD) − C5(µSD),

the non-vanishing couplings contributing to K → ππ am-
plitudes are

(g27D4) = 4L5g
∞
27 ,

(g8N5) = −2L5C̃1(µSD)

+ C6(µSD)B(µSD) (−16X14 + 32X17 − 24X38 − 4X91) ,

(g8N6) = 4L5C̃1(µSD)

+ C6(µSD)B(µSD)

× (−32X17 − 32X18 + 32X37 + 16X38) ,

(g8N7) = 2L5C̃1(µSD)

+ C6(µSD)B(µSD) (−32X16 − 16X17 + 8X38) ,

(g8N8) = 4L5C̃1(µSD)

+ C6(µSD)B(µSD) (−16X15 − 32X17 + 16X38) ,

(g8N9)

= C6(µSD)B(µSD) (−64L5L8 − 8X34 + 8X38 + 4X91) ,

(g8N10)

= C6(µSD)B(µSD) (−48X19 − 8X38 − 2X91 − 4X94) ,

(g8N11) = C6(µSD)B(µSD) (−32X20 + 4X94) ,

(g8N12) = C6(µSD)B(µSD)

× (128L2
8 + 16X12 − 16X31 + 8X38 − 2X91 − 4X94),

(g8N13) = C6(µSD)B(µSD)

×
(

256L7L8 − 32
3

X12 − 16X33 + 16X37

+
4
3
X91 + 4X94

)
. (5.11)

Bosonization of the four-quark operators Qi in (5.1) leads
to the following expressions4 for the LECs Zi:

(g8Z1) = C̃1(µSD) (K12/3 − K13)

+
64
3

C6(µSD)B(µSD)L8 (−K9 + 5K10 + 3K11)

− 24C8(µSD)B(µSD)L8/e2,

(g8Z2) =
4
3
C̃1(µSD)K13

− 256
3

C6(µSD)B(µSD) (K10 + K11) L8,

(g8Z3) = C̃1(µSD)K13

− 64C6(µSD)B(µSD) (K10 + K11) L8,

(g8Z4) = −C̃1(µSD)K13

+ 64C6(µSD)B(µSD)L8 (K10 + K11) ,

(g8Z5) =
4
3
C̃1(µSD) (4K1 + 3K5 + 3K12)

− 64
3

C6(µSD)B(µSD) (2K7 + K9) L5

+ C10(µSD)/e2,

(g8Z6) =
2
3
C̃1(µSD) (−K5 − K6 + 3K12 + 3K13)

4 Z13, Z14, Z15 do not contribute to K → ππ amplitudes.
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− 32
3

C6(µSD)B(µSD) (K9 + K10 + 3K11) L5

− 12C8(µSD)B(µSD)L5/e2,

(g8Z7) = C̃1(µSD) (8K2 + 6K6 − 4K13)

− 32C6(µSD)B(µSD) (2K8 + K10 + K11) L5,

(g8Z8) =
4
3
C̃1(µSD) (2K3 + K5 + 3K12)

+
4
3
C̃2(µSD)K5 +

3
2e2 (C9(µSD) + C10(µSD)) ,

(g8Z9) =
4
3
C̃1(µSD) (−K4 + K5 − K12 − K13)

+
4
3
C̃2(µSD)K5 − 3

2
C7(µSD)

e2 ,

(g8Z10) = −2C̃1(µSD)K13

+ 4
(
C̃1(µSD) + C̃2(µSD)

)
K6,

(g8Z11) = 2C̃1(µSD) (K4 + K13) ,

(g8Z12) = −4C̃1(µSD)K3,

(g8Z13) =
2
3
C̃1(µSD) (K5 − K12 − K13)

+
64
3

C6(µSD)B(µSD) (K10 + K11) L5,

(g8Z14) = C̃1(µSD) (−2K6 + 4K13)

− 32C6(µSD)B(µSD) (K10 + K11) L5,

(g8Z15) = C̃1(µSD) (−2K6 + 4K13)

− 32C6(µSD)B(µSD) (K10 + K11) L5. (5.12)

We recall here that a matching ambiguity arises when work-
ing to next-to-leading order in the chiral expansion and at
leading order in 1/Nc: we cannot identify at which value of
the chiral renormalization scale νχ the large-Nc estimates
for theLECs apply.This turns out to be amajor uncertainty
in this approach. In order to account for this uncertainty,
we vary the chiral renormalization scale between 0.6 and
1 GeV. The corresponding changes in the amplitudes are
sub-leading effects in 1/Nc and we take them as indica-
tion of the uncertainty associated with working at leading
order in 1/Nc.

Finally, from the above expressions we see that in order
to estimate the weak NLO LECs at leading order in 1/Nc,
one requires as input several combinations of strong LECs
of order p4, p6 and e2p2. Belowwe summarize our knowledge
of the needed parameters.

5.3 Strong couplings of O(p4)

It iswell known that the limitNc → ∞provides an excellent
description of the O(p4) CHPT couplings at νχ ∼ Mρ [43].
The leading-order contribution of Q6 involves the LEC
L5. The large-Nc value of this coupling can be estimated

from resonance exchange [18]. Within the single-resonance
approximation (SRA) [43, 44], taking F = Fπ and MS =
1.48 GeV [45], one finds L∞

5 = F 2/(4M2
S) = 1.0 · 10−3. In

our analysis we assign a 30% error to this parameter so
that the adopted range for L5 reaches at the upper end the
value implied by the p4 fit and at the lower end the value
obtained in the p6 fit of [46]. The combination (2L8−L5)∞
can also be determined through resonance exchange. The
only non-zero contribution comes from the exchange of
pseudoscalar resonances. Within the SRA one gets [43]

(2L8−L5)∞ = − F 2

8M2
P

≈ − F 2

16M2
S

= −1
4
L∞

5 = −0.25·10−3.

(5.13)
The factor B(µSD) in (5.4) and the O(p4) corrections

∆̃C, ∆̃
(ew)
C and ∆CA(ε)

n introduce additional dependences
on the strong chiral couplings L4, L6 and (3L7 + L8). At
large Nc, L∞

4 = L∞
6 = 0 and

(3L7 + L8)∞ = −
(4M2

K − 3M2
η − M2

π)F 2
π

24(M2
η − M2

π)2

− (2L8 − L5)∞

4

= −0.15 · 10−3. (5.14)

The same numerical estimate is obtained within the SRA,
taking forL∞

7 the knowncontribution from η1 exchange [18].

5.4 Strong couplings of O(p6)

A systematic analysis of the LECs of O(p6) is still miss-
ing. Resonance contributions to some of the Xi have been
studied in [46,47].

Resonance dominance (justified within large-Nc QCD)
implies that the LECs of O(p6) occurring in the bosoniza-
tion of the penguin operator Q6 are determined by scalar
exchange. The mass splitting in the lightest scalar nonet
strongly influences those LECs.

We have estimated the relevant Xi with the scalar
resonance Lagrangian discussed in [45] (setting gS

4 = 0).
The relevant resonance parameters in the nonet limit are
cd, cm, MS, and eS

m, the latter governing the mass split-
ting within the scalar nonet. We use cm = cd = Fπ/2, as
determined from short-distance constraints [43], and

MS = 1.48 GeV, eS
m = 0.2 (5.15)

from a phenomenological analysis of mass spectra [45]
(these numbers correspond to scenario A of [45]). Even
within resonance saturation, this is not a complete cal-
culation of the relevant LECs of O(p6) but we expect it
to capture the most significant physics. We refrain from
reporting explicit numerics for the individual LECs here.
Numerical values for the relevant combinations are reported
in the next section.

Finally, one can include nonet breaking effects within
the framework of [45]. In the chiral resonance Lagrangian,
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these effects are needed in order to understand the scalar
mass spectrum (the coupling kS

m and γS of [45]). Once
the resonances are integrated out, nonet breaking effects,
sub-leading in 1/Nc, appear in the Xi and therefore in
the weak LECs g8Ni. Although this is far from being a
complete analysis of sub-leading corrections it gives already
an indication of their size. For all the quantities of physical
interest, inclusion of kS

m and γS produces shifts within our
estimate of 1/Nc corrections based on varying the chiral
renormalization scale (see discussion above).

5.5 Strong couplings of O(e2p2)

Four combinations of the Ki appear directly in the local
amplitudes ∆CA

(γ)
n of O(e2G8p

2):

U1 = K1 + K2, U2 = K5 + K6,

U3 = K4 − 2K3, U4 = K9 + K10. (5.16)

Within our large-Nc estimates, also other combinations of
Ki appear through the couplings g8gewk and g8Zi. The ones
relevant for K → ππ decays are K7, K8, K9, K10, K11,
K12, K13. It turns out that all the relevant combinations
can be obtained from existing estimates [48,49], which we
now briefly review.

TheLECsKi can be expressed as convolutions of aQCD
correlation function with the electromagnetic propagator.
Therefore, their calculation involves an integration over
the internal momenta of the virtual photon, which makes
reliable numerical estimates difficult even at large Nc. In
contrast to the strong LECs Lr

i , the dependence of the Ur
i

on the CHPT renormalization scale νχ is already present
at leading order in 1/Nc. In addition, the Ki depend also
on the short-distance QCD renormalization scale µSD and
on the gauge parameter ξ. Whenever numerical estimates
are reported in the following, they refer to the Feynman
gauge (ξ = 1) and µSD = 1 GeV.

A first attempt to estimate the couplings Ki, using the
extended Nambu–Jona–Lasinio model at long distances,
has found the results [48]

[3Ur
1 + Ur

2 ] (νχ = Mρ) = (2.85 ± 2.50) · 10−3,

[Ur
1 + 2Kr

11] (νχ = Mρ) = −(2.5 ± 1.0) · 10−3,

Ur
4 (νχ = Mρ) = (2.7 ± 1.0) · 10−3,

Kr
10(νχ = Mρ) = (4.0 ± 1.5) · 10−3. (5.17)

The last two equations imply (adding the errors linearly):

Kr
9(νχ = Mρ) = −(1.3 ± 2.5) · 10−3. (5.18)

Moreover, in the limit Nc → ∞, one has the relation [48]

Ur
3 = 2Ur

1 , (5.19)

and the couplings K7, K8 are subleading. We therefore take
Kr

7,8(Mρ) = 0.
The remaining couplings needed were obtained at large

Nc in [49] through the evaluation of the relevant correlation

functions in terms of narrow hadronic resonances. Within
the SRA, one gets [49]

Kr
11 =

1
8(4π)2

×
{

−(ξ + 3) log
(

µ2
SD

M2
V

)
+

(
ξ − 3

2

)
log

(
ν2

χ

M2
V

)

− ξ − 27
4

+
33
2

log 2

}
,

Kr
12 =

1
4(4π)2

×
{(

ξ − 3
2

)
log

(
ν2

χ

M2
V

)

− ξ log
(

µ2
SD

M2
V

)
− ξ − 17

4
+

9
2

log 2

}
, (5.20)

Kr
13 =

3
4(4π)2

{
1 + (1 − ξ)

[
1
12

+
1
2

ln
(

M2
V

2ν2
χ

)]}
.

Taking µSD = 1 GeV, νχ = MV and ξ = 1, this gives
Kr

11 = 1.26 ·10−3, Kr
12 = −4.2 ·10−3 and Kr

13 = 4.7 ·10−3.
Inserting the SRA prediction from (5.20) into (5.17), we get

Ur
1 (νχ = Mρ) = −5.0 ·10−3, Ur

2 (νχ = Mρ) = 17.9 ·10−3.
(5.21)

A direct evaluation of Ur
1 and Ur

2 is in principle possible
within the SRA [49]. However, it requires an analysis of
resonance couplings beyond the known results of [18].

6 Numerical results

We are now in the position to quantify the size of NLO
contributions to the relevant isospin amplitudes, due to
both chiral loops and local couplings in the effective the-
ory. The master formulas for the amplitudes at NLO are
given in (4.6) and (4.7). They are organized in such a way
as to easily identify the distinct sources of IB and to sep-
arate the LO from the NLO contributions in the chiral
expansion. In Tables 1, 2, and 3 we report explicit results
for the isospin amplitudes An, n = 1/2, 3/2, 5/2, quoting
for each component the following quantities:
(1) the LO contributions a

(X)
n ;

(2) the NLO loop corrections ∆LA(X)
n , consisting of ab-

sorptive and dispersive parts. The dispersive component
depends on the chiral renormalization scale νχ (fixed at
0.77 GeV);
(3) the NLO local contributions to the CP -even and CP -
odd amplitudes, denoted respectively by [∆CA(X)

n ]+ and
[∆CA(X)

n ]−. Our estimates of [∆CA(X)
n ]± at the scale νχ =

0.77 GeV are based on the leading 1/Nc approximation. We
discuss below the uncertainty associated with this method.
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Table 1. Numerics for A1/2: a
(X)
1/2 , ∆LA(X)

1/2 , ∆CA(X)
1/2

(X) a
(X)
1/2 ∆LA(X)

1/2

[
∆CA(X)

1/2

]+ [
∆CA(X)

1/2

]−

(27)
√

2
9 1.02 + 0.47i 0.01 ± 0 ± 0.60 0.01 ± 0 ± 0.60

(8)
√

2 0.27 + 0.47i 0.03 ± 0.01 ± 0.05 0.17 ± 0.01 ± 0.05
(ε) − 2

√
2

3
√

3
0.26 + 0.47i −0.17 ± 0.03 ± 0.05 1.56 ± 0.06 ± 0.05

(γ) – −1.38 −0.30 ± 0.05 ± 0.30 −12.6 ± 2.5 ± 0.30
(Z) 4

√
2

3 −1.06 + 0.79i −0.08 ± 0.01 ± 0.18 0.17 ± 0.01 ± 0.18
(g) 2

√
2

3 0.27 + 0.47i −0.15 ± 0 ± 0.05 −0.15 ± 0 ± 0.05

Table 2. Numerics for A3/2: a
(X)
3/2 , ∆LA(X)

3/2 , ∆CA(X)
3/2

(X) a
(X)
3/2 ∆LA(X)

3/2

[
∆CA(X)

3/2

]+ [
∆CA(X)

3/2

]−

(27) 10
9 −0.04 − 0.21i 0.01 ± 0 ± 0.05 0.01 ± 0 ± 0.05

(ε) 4
3
√

3
−0.69 − 0.21i −0.15 ± 0.02 ± 0.50 1.74 ± 0.06 ± 0.50

(γ) – −0.47 0.59 ± 0.02 ± 0.10 1.70 ± 0.35 ± 0.10
(Z) 4

3 −0.86 − 0.78i 0.02 ± 0.01 ± 0.30 0.16 ± 0.01 ± 0.30
(g) 2

3 −0.50 − 0.21i −0.15 ± 0 ± 0.20 −0.15 ± 0 ± 0.20

Table 3. Numerics for A5/2: a
(X)
5/2 , ∆LA(X)

5/2 , ∆CA(X)
5/2

(X) a
(X)
5/2 ∆LA(X)

5/2

[
∆CA(X)

5/2

]+ [
∆CA(X)

5/2

]−

(γ) – −0.51 −0.20 ± 0 ± 0.10 −0.11 ± 0.01 ± 0.10
(Z) – −0.93 − 1.15i −0.14 ± 0.01 ± 0.40 0.01 ± 0.01 ± 0.40

The definition of [∆CA(X)
n ]± is

[∆CA(X)
n ]+ =



Re
(
G27 ∆CA(27)

n

)
Re(G27)

, X = 27,

Re
(
G8gewk ∆CA(g)

n

)
Re(G8gewk)

, X = g,

Re
(
G8 ∆CA(X)

n

)
Re(G8)

, X = 8, Z, ε, γ,

(6.1)

[∆CA(X)
n ]− =



Im
(
G27 ∆CA(27)

n

)
Im(G27)

, X = 27,

Im
(
G8gewk ∆CA(g)

n

)
Im(G8gewk)

, X = g,

Im
(
G8 ∆CA(X)

n

)
Im(G8)

, X = 8, Z, ε, γ .

(6.2)
The uncertainty in [∆CA(X)

n ]± has two sources, related
to the procedure used to estimate the NLO local couplings
(see Sect. 5), and we quote them separately in the tables.
The first one corresponds to the short-distance input, essen-
tially the renormalization scale used to evaluate the Wilson
coefficients. We estimate this uncertainty by varying the
scale µSD between 0.77 GeV and 1.3 GeV. The second one
derives fromworking at leading order in the large-Nc expan-

sion. At this order, there is a matching ambiguity because
we do not know at which value of the chiral scale the esti-
mates apply. Therefore, we vary the chiral renormalization
scale νχ between 0.6 and 1 GeV. The results show that the
second uncertainty (long-distance) dominates over the first
one (short-distance) in most cases. Moreover, one should
keep in mind that the errors quoted for the [∆CA(X)

n ]± are
strongly correlated. In phenomenological applications we
shall take such correlations into account.

Some comments on the numerical results are now in
order. From chiral power counting, the expected size of
NLO corrections is at the level of ∼ 0.2–0.3, reflecting
M2

K/(4πFπ)2 � 0.2. This estimate sets the reference scale
in the following discussion.

The following pattern seems to emerge from our results.
On one hand, whenever the absorptive loop correction is
small, the dispersive correction is dominated by the local
contribution. Therefore, it is rather sensitive to the chiral
renormalization scale and to the values of LECs. In these
cases, the size of NLO corrections is rather uncertain, at
least within the approach we follow here in evaluating the
LECs. Extreme examples of this behavior are provided by
∆CA(27)

1/2 (of little phenomenological impact) and ∆CA(ε)
3/2

(which is instead quite relevant phenomenologically).
On the other hand, whenever the absorptive loop cor-

rection is large, the dispersive component is dominated by
the non-polynomial part of the loops and it is relatively
insensitive to the chiral renormalization scale and to the
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values of LECs. In all relevant cases we have checked that
the absorptive component of ∆LA(X)

n is consistent with
perturbative unitarity. Therefore we conclude that in these
cases the size of NLO corrections is rather well understood,
being determined by the physics of final state interactions.
Typical examples of this behavior are given by ∆LA(Z)

1/2,3/2,
which have an important phenomenological impact.

We conclude this section with some remarks on appar-
ently anomalous results.
(1) ∆LA(Z)

1/2,3/2 is O(1). As discussed above, the physics un-
derlying this result is well understood, being related to the
absorptive cut in the amplitude. The key point is that this
feature is absent at LO in the chiral expansion. It first shows
up at NLO, setting the natural size of the loop corrections.
NNLO terms in the chiral expansion are then expected to
scale as NLO ×(0.2–0.3), since corrections to the absorp-
tive cut behave this way. Therefore ∆LA(Z)

1/2,3/2 ∼ O(1)
does not imply a breakdown of the chiral expansion.

(2)
[
∆CA(ε)

1/2,3/2

]−
is O(1). This result is determined by

the large numerical coefficients multiplying the couplings
Nr

6,7,8,13, which turn out to have natural size within the
leading 1/Nc approximation. We observe, however, that
in the case of the ∆I = 3/2 amplitude (phenomenologi-
cally relevant) the leading 1/Nc approximation is afflicted
by a large uncertainty due to high sensitivity to νχ. This
uncertainty mitigates the apparent breakdown of chiral
power counting.
(3) Yet another surprising result is the one for [∆CA(γ)

1/2]
−.

The underlying reason is in the large size of the CP vio-
lating component of the Wilson coefficients C9,10. Again,
the operators Q9,10 only make their first contribution at
NLO in the chiral expansion.

7 Phenomenology I:
CP conserving amplitudes

This section is devoted to a phenomenological analysis of
K → ππ decays including all sources of isospin breaking.
The theoretical parametrization of the amplitudes is based
on the NLO CHPT analysis discussed in the previous sec-
tions. Our goal is to extract information on the pure weak
amplitudes (or equivalently on the couplings g8 and g27)
and to clarify the role of isospin breaking in the observed
K → ππ rescattering phases. All along we keep track of
both experimental errors and the theoretical uncertainties
related to our estimates of the NLO couplings at leading
order in the 1/Nc expansion.

7.1 Including the radiative modes

When considering electromagnetic effects at first order in
α, only an inclusive sum of K → ππ and K → ππγ widths
is theoretically meaningful (free of IR divergences) and
experimentally observable.

We denote the observable widths by Γn[γ](ω), where
n = +−, 00, +0. These widths depend in general on the

amount of radiative events included in the data sample,
according to specific experimental cuts on the radiative
mode. This dependence is compactly represented by the
parameter ω. Denoting by An the IR finite amplitudes as
defined in (2.3), the relevant decay rates can be written as

Γn[γ](ω) =
1

2
√

sn
|An|2 Φn Gn(ω) . (7.1)

Here
√

sn is the total CMS energy (the appropriate kaon
mass) and Φn is the appropriate two-body phase space.
The infrared factors Gn(ω) are defined as

Gn(ω) = 1 +
α

π
[2π Re Bn(Mγ) + In(Mγ ; ω)] . (7.2)

Note that Gn(ω) is different from 1 only in the K0 → π+π−
andK+ → π+π0 modes.The factorBn(Mγ) arises from the
IR divergent loop amplitude (its definition for n = +− is
given in (4.5)), while α/π In(Mγ ; ω) is the K → ππγ decay
rate normalized to the non-radiative rate. The latter term
depends on the treatment of real photons (hence on ω) and
is infrared divergent. The combination of IR divergences
induced by virtual and real photons cancels in the sum,
leaving the ω dependent factor Gn(ω).

We discuss here in some detail the function G+−(ω),
which plays an important phenomenological role. On the
other hand, the inclusion of G+0(ω) only produces an effect
of order αA3/2 (or αG27) and therefore represents a sub-
leading correction. Its numerical effect will be taken into
account, following the analysis of [5]. The explicit form of
B+−(Mγ), the virtual photon contribution to G+−(ω), can
be found in (B.1). The real photon contribution α/π In(Mγ ;
ω) arises from the decay

K0(P ) → π+(p+)π−(p−)γ(k),

and it has the form

I+−(Mγ ; ω) =
2

M2
K

√
1 − 4M2

π

M2
K

∫ smax

s−(ω)
ds f+−(s; Mγ),

(7.3)
where

s = (p+ + p−)2, smin = 4M2
π , smax = (MK − Mγ)2,

(7.4)

f+−(s; Mγ) (7.5)

= M2
π

(
1

X+
− 1

X−

)
+

s − 2M2
π

M2
K − s − M2

γ

log
(

X+

X−

)
,

2X± =
(
M2

K − s − M2
γ

)
±

√
1 − 4M2

π

s
λ1/2(M2

K , s, M2
γ ),

(7.6)

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (7.7)

The infrared divergence comes from the upper end of the
integration in the dipion invariant mass (s ∼ smax). We
have verified by analytic integration in the range

MK(MK − 2ω) < s < smax
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that I+−(Mγ ; ω) has the correct Mγ dependence to cancel
the infrared singularity generated by virtual photons. For
ω/MK 	 1, the analytic expression of I+−(Mγ ; ω) can be
found in (21) of [5]. The corresponding function G+−(ω)
is plotted in Fig. 2 of [5].

Recently, the KLOE collaboration has reported a high-
precision measurement of the ratio Γ+−/Γ00 [9], where the
result refers to the fully inclusive treatment of radiative
events. In order to use the KLOE measurement in our
analysis, we need to calculate the fully inclusive rate (no
cuts on the ππγ final state). We have done this by numerical
integration of (7.3) and we find

G+−
∣∣∣
inclusive

= 1 + 0.67 · 10−2 . (7.8)

7.2 Constraints from measured branching ratios

CP conserving K → ππ phenomenology is based on the
following input from (7.1) for n = +−, 00, +0:

|An| =
(

2
√

sn Γn

Gn Φn

)1/2

≡ Cn . (7.9)

It is convenient to express these equations in terms of the
isospin amplitudes A0, A2, A

+
2 and the phase shift χ0 −χ2

(as defined in (2.2)). With r = (C+−/C00)2 one obtains5

A+
2 =

2
3
C+0,

(A0)2 + (A2)2 =
2
3
C2

+− +
1
3
C2

00,

A2

A0
cos(χ0 − χ2) =

r − 1 +
(

A2
A0

)2 (
2r − 1

2

)
√

2(1 + 2r)
. (7.10)

In general, in the presence of isospin breaking, these three
independent experimental constraints are not sufficient to
fix the three isospin amplitudes (A0, A2, A+

2 or A1/2, A3/2,
A5/2) plus the phase difference (χ0 − χ2). In the previous
sections, we have shown how CHPT relates the ampli-
tude A5/2 to A1/2, thus effectively reducing the number
of independent amplitudes. Including also all other isospin
breaking effects, we can extract the couplings g8 and g27
from (7.10).

7.3 CHPT fit to K → ππ data

Using (7.10) as starting point, we perform a fit to g8, g27
and the phase difference χ0 − χ2. In order to do so, we
employ the CHPT parametrization for the AI . The detailed
relations between A1/2,3/2,5/2 (presented in Sects. 3, 4) and
A0, A2, A

+
2 , to first order in isospin breaking, are reported

5 Note that in the last equation one has to use A2 and not
A+

2 (as done in the isospin conserving analyses). For this reason
the extraction of the phase shift is related to the ∆I = 5/2
amplitude.

in Sect. 8.1. We leave the phase difference χ0 −χ2 as a free
parameter because one-loop CHPT fails in reproducing the
strong s-wave phase shifts.

Apart from g8 and g27, the amplitudes An depend on
the LO couplings g8gewk, Z and on a large set of NLO
couplings. Given our large-Nc estimates for g8gewk and for
the ratios of NLO over LO couplings (g8Ni)/g8 , . . . (see
Sect. 5), we study the constraints imposed on g8, g27 by
the experimental branching ratios. In this process we keep
track of the theoretical uncertainty induced by the use of
a specific approximation in estimating the relevant LECs
(leading order in the large-Nc expansion). In practice, this
reduces to studying the dependence of the amplitude (and
of the output values of g8 and g27) on two parameters: the
short-distance scale (µSD) and the chiral renormalization
scale (νχ).

In summary, the experimental input to the fit is given
by the three partial widths Γ+−,00,+0 (kaon lifetimes and
branching ratios) [10] and by the new KLOE measurement
for Γ+−/Γ00 [9]. The theoretical input is given by the NLO
CHPT amplitudes as well as the estimates for gewk and the
NLO couplings. As primary output we report Re g8, Re g27
and χ0 −χ2. Derived quantities of interest for phenomeno-
logical applications will be reported subsequently.

(1) Using the NLO isospin conserving amplitudes (IC
fit), we find

Re g8 = 3.665 ± 0.007(exp) ± 0.001(µSD)

± 0.137(νχ),

Re g27 = 0.297 ± 0.001(exp) ± 0.014(νχ),

χ0 − χ2 = 48.6 ± 2.6(exp). (7.11)

Using instead the tree-level (LO) amplitudes in the isospin
limit would lead to Re g8 = 5.09±0.01 and Re g27 = 0.294±
0.001. This result is in qualitative agreement with [50]:
NLO chiral corrections enhance the I = 1/2 amplitude by
roughly 30%.

(2) Using the full NLO isospin breaking amplitudes (IB
fit), we find6

Re g8 = 3.650 ± 0.007(exp) ± 0.001(µSD)

± 0.143(νχ),

Re g27 = 0.303 ± 0.001(exp) ± 0.001(µSD)

± 0.014(νχ),

χ0 − χ2 = 54.6 ± 2.2(exp) ± 0.9(νχ). (7.12)

In the IB case, a tree-level (LO) fit leads to Re g8 = 5.11±
0.01 and Re g27 = 0.270 ± 0.001.

A few remarks are in order.
(1) Using NLO amplitudes, both g8 and g27 receive small
shifts after inclusion of IB corrections. While this could
be expected for g8, it results from a cancellation of differ-
ent effects in the case of g27 (at tree level the inclusion of

6 The uncertainty in ε(2) = (1.061 ± 0.083) · 10−2 [51] pro-
duces errors one order of magnitude smaller than the smallest
uncertainty quoted above.
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isospin breaking reduces g27 by roughly 10% ). Note also
that competing loop effects reduce the νχ dependence of
Re g27 (IB fit) to only ±0.002. As a more realistic estimate
of the long-distance error we have chosen to quote the νχ

dependence induced by each one of the competing effects
(for example the isospin conserving loops).
(2) The output for g8 and g27 is sensitive to the input
used for the strong LECs Li of O(p4). The results of (7.11)
and (7.12) correspond to the central values quoted inSect. 5.
We have repeated the fit with non-central input and have
found the variations in g8 and g27 to be below 5%.
(3) In obtaining the results in (7.11) and (7.12) we have
used the large-Nc predictions for (g8Ni)/g8. We have also
employed the alternative procedure of using large Nc di-
rectly for the couplings g8Ni. In this case we find g8 = 3.99
and g27 = 0.289, reflecting the change in size of the p4 local
amplitudes. All other quantities of phenomenological in-
terest are stable under this change in the fitting procedure.
(4) Some derived quantities of phenomenological interest
are the ratios of isospin amplitudes:

Re A0/ Re A2, Re A0/ Re A+
2 ,

f5/2 ≡ Re A2/ Re A+
2 − 1.

From our fit we find[
Re A0

Re A2

]
IB fit

=

20.33 ± 0.07(exp) ± 0.01(µSD) ± 0.47(νχ),[
Re A0

Re A+
2

]
IB fit

=

22.09 ± 0.09(exp) ± 0.01(µSD) ± 0.05(νχ),[
f5/2

]
IB fit = (7.13)

(8.6 ± 0.03(exp) ± 0.01(µSD) ± 2.5(νχ)) · 10−2.

In the absence of isospin breaking, one finds instead f5/2 =
0 and Re A0/ Re A2 = 22.16 ± 0.09.

7.4 Isospin breaking in the phases

This section is devoted to understanding isospin breaking
in the rescattering phases of K → ππ. If isospin is conserved
Watson’s theorem predicts χ0 − χ2 = δ0 − δ2 ∼ 45◦. For
a long time this prediction has not been fulfilled by the
data, as one typically encountered χ0 − χ2 ∼ 60◦.

The situation has recently improved. Using the KLOE
data [9] and working in the isospin limit, our fit (7.11)
gives χ0 − χ2 ∼ 49◦ and so there seems to be no more
phase problem. However, the inclusion of isospin breaking
appears to reintroduce the issue. In order to understand
what is going on, we analyze in detail the various factors
determining χ0 − χ2.

The last of (7.10) can be rewritten as

A+
2

A0
cos(χ0 − χ2) =

r − 1 +
(

A2
A0

)2 (
2r − 1

2

)
√

2 (1 + 2r)(1 + f5/2)
. (7.14)

Let us first calculate the right-hand side without an I = 5/2
amplitude (f5/2 = 0). With the old value r = 1.1085 as
input (PDG2000 [52]), one obtains

A+
2

A0
cos(χ0 − χ2) = 0.02461 . (7.15)

With A+
2 /A0 = 0.045 (based on the IC fit), this leads to

the standard puzzle that χ0 −χ2 is much bigger than 45◦:

χ0 − χ2 = 57◦ . (7.16)

What could be the reasons for this discrepancy of about
30% (cos 45◦/ cos 57◦ = 1.30)? Let us consider several ef-
fects:
(1) First of all, the right-hand side of (7.14) has changed
with the recent KLOE result [9] r = 1.1345 to give

A+
2

A0
cos(χ0 − χ2) = 0.02987 . (7.17)

This is a sizable correction of about 18% and it goes more
than half-way in the right direction to decrease the phase
difference.
(2) Taking into account isospin breaking introduces an
I = 5/2 amplitude via the ratio f5/2 in (7.14). According
to our results (7.13),

f5/2 = (6.5 (loops) + 2.1 (local) ± 2.5(νχ)) · 10−2 ,
(7.18)

increasing again the discrepancy. This value is dominated
by loop contributions. Even if one changes the sign of the
relevant combination of LECs, f5/2 would still be positive.
Note that (7.18) amounts to a correction of ∼ 8% (in
the “wrong” direction). As already noted by Wolfe and
Maltman [7], it seems impossible to solve the phase problem
with a reasonable choice of counterterms.
(3) Finally, the “infrared factor” for the +− mode must
be taken into account. This is straightforward with the
inclusive measurement of KLOE. We find r = 1.127, which
increases again the discrepancy. Including also the effect
of f5/2, we obtain

A+
2

A0
cos(χ0 − χ2) = 0.02611 , (7.19)

leading to χ0 − χ2 = (54.6 ± 2.4)◦.
Before addressing the question whether this result is

in disagreement with the ππ phase shift prediction [53]
δ0 − δ2 = (47.7 ± 1.5)◦, it is mandatory to study the effect
of isospin breaking on the phases themselves. We use the
general decomposition

χI = δI + γI (I = 0, 2) , (7.20)
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where γI represents an isospin breaking correction. The γI

are related to isospin breaking dynamics in ππ rescatter-
ing as well as to the presence of radiative channels [5,54].
Since the analysis of [5], new information on radiative cor-
rections in ππ scattering has become available, allowing
for a reevaluation of γ0 − γ2.

7.5 Optical theorem and γ0 − γ2

The K → ππ amplitudes at NLO in CHPT allow for a
perturbative evaluation of γ0,2. We find7

γ0 = (−0.18 ± 0.02)◦

γ2 = (3.0 ± 0.4)◦ , (7.21)

where the error is obtained by varying the chiral renormal-
ization scale νχ as in the main fit. Setting the NLO local
terms to zero would lead to results within the range quoted
in (7.21). This evaluation incorporates the constraints of
the optical theorem at leading order in perturbation theory.
In practice, this only reflects the O(e2p0) mixing between
the I = 0 and I = 2ππ channels, completely missing both
higher-order corrections and the new physical effect due
to the radiative channel ππγ. In order to improve upon
these perturbative results, a more general analysis of the
optical theorem for K0 → ππ amplitudes is required. We
shall follow here the approach of [5], except for a few de-
tails. The main novelty lies in the final stage, in which one
needs an explicit calculation of isospin breaking effects in
ππ scattering: we use the results obtained at O(e2p2) in
CHPT in [55,56].

We now summarize the steps involved in the optical
theorem analysis of [5], relegating some technical details
to Appendix D. For this section, CP is assumed to be
conserved.
(1) The first step is to work out the consequences of the
optical theorem for K0 → ππ amplitudes, considering the
following intermediate states: π+π−, π0π0 and π+π−γ. For
the radiative amplitudes describing K0 → π+π−γ and
π+π−γ → ππ we use the leading Low parametrization,
thus neglecting possible structure dependent terms8. In
this approximation the radiative amplitudes are known in
terms of the non-radiative ones. Under the assumptions
listed above, and collecting the K0 → ππ amplitudes in
a two-component vector A, the optical theorem has the
following form:

AbsA = β
(
T † + R

)
A, (7.22)

where β =
√

1 − 4M2
π0/M2

K , while T and R are two-by-two
matrices: T is related to the s-wave projection of the ππ T -
matrix, while R encodes the effect of both radiative modes
and phase space corrections induced by mass splitting.

7 The results depend on the ratio g8/g27, for which we use
the IB fit output.

8 This is known to be an excellent approximation for K0 →
π+π−γ.

The explicit form of (7.22) is best derived by working
with ππ states in the charge basis (π+π−, π0π0) where it is
more transparent to deal properly with IR singularities and
phase space corrections. Special care is needed in remov-
ing the IR and Coulomb singularities from the amplitudes
A+−, T+−,00 and T+−,+−. This step involves an arbitrary
choice, which only affects the intermediate states of the
analysis but not the final results. We adopt the following
prescription9:

A(K0 → π+π−) = A+− exp {αBππ},

A(π0π0 → π+π−) = T+−,00 exp {αBππ},

A(π+π− → π+π−) = T+−,+− exp {α (2Bππ + Cππ)},

(7.23)

where the infrared singularity is separated in the factors
Bππ and Cππ, whose form is reported in Appendix D. These
factors depend only on the charges and kinematical con-
figuration of the external particles.
(2) In order to make contact with standard treatments,
it is convenient to represent (7.22) in the “isospin” basis
for ππ amplitudes. Explicit relations between charge and
isospin amplitudes are reported in [5]. In the isospin basis
the matrices have the form

T =
(

T00 T02

T20 T22

)
,

R =

 2
3

(∆+−T ∗
00 + δ+−)

√
2

3
(∆+−T ∗

00 + δ+−)
√

2
3

(∆+−T ∗
22 + δ+−)

1
3

(∆+−T ∗
22 + δ+−)

 ,

(7.24)
where, using the notation

〈f〉 ≡
∫ +1

−1
d(cos θ) f(cos θ) , (7.25)

the various quantities have the following structure:

Tab =
1

64π
〈Tab〉,

∆+− = −
2(M2

π± − M2
π0)

β2M2
K

+ 2α Re(Bππ)

+
e2

Φ+−

∫
dΦ+−γ f rad

1 ,

δ+− =
α

32π
〈T+−,+− · Cππ〉

+
α

4Φ+−

∫
dΦ+−γT+−,+−f rad

2 . (7.26)

9 The ππ amplitudes are functions of two of the three Mandel-
stam variables s, t, u. In the following we set s = M2

K and trade
the other independent variable for the CMS scattering angle
θ. Moreover, the explicit dependence on cos θ is suppressed in
order to keep the expressions compact.
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Tab is the s-wave projection of the b → a ππ scattering
amplitude. The factor ∆+− receives a contribution from
phase space corrections (pion mass splitting), one from
virtual photons (Bππ) and one from real photons (f rad

1 ).
Likewise, δ+− reflects both virtual corrections (Cππ) and
real photon effects (f rad

2 ). The definition of the phase space
factors dΦ+− and dΦ+−γ , as well as of f rad

1,2 is reported in
Appendix D. We remark here that ∆+− and δ+− are free
of infrared singularities, as these cancel in the sum of real
and virtual photon contributions.
(3) At this point one needs a general parametrization of the
matrix TIJ , the T -matrix restricted to the two-dimensional
subspace of ππ channels. Assuming T -invariance (but not
unitarity of the S-matrix restricted to this subspace), an
explicit form is given by

T =
1
β

 (η0 e2iδ0 − 1)
2i

a ei(δ0+δ2)

a ei(δ0+δ2) (η2 e2iδ2 − 1)
2i

 (7.27)

in terms of five parameters (two phase shifts, two inelastic-
ities and one off-diagonal amplitude). If one assumes that
only one extra state couples to the ones considered here
(namely the π+π−γ state), then the inelasticities are cor-
related, as noted in [54]. Since our subsequent discussion
does not depend on the inelasticities, we do not elaborate
further on this point.
(4) The next step is to assume an ansatz for the K → ππ
amplitudes of the type

AI = AIei(δI+γI) (I = 0, 2) (7.28)

and to work out the constraints imposed upon γI by (7.22).
Solving for sin γ0 and sin γ2 to first order in α and taking
into account A2/A0 	 1, one finds [5]

sin γ0 = β (Re(R00) − tan δ0 Im(R00))

� O(α sin δ0),

sin γ2 = β
A0

A2

[
|T20| +

1
cos δ2

(Re(R20) cos δ0

− Im(R20) sin δ0)] . (7.29)

The key feature of (7.29) is that in the expression for γ2
the isospin breaking effects get once again enhanced by the
factor A0/A2 ∼ 22.
(5) The final step consists in evaluating T02, ∆+− and
δ+−, for which we need an explicit expression for the ππ
amplitudes with isospin breaking [55,56], as well as explicit
expressions of Bππ and Cππ. The details of the calculations
cannot be given in a concise way and we report here only
the results.
For T02 we find

T02 =

√
2 (M2

π± − M2
π0)

24πF 2
π

(
1 + ∆e2p2

02

)
. (7.30)

Using the results of [55,56] and their estimate of the relevant
LECs Ki, we obtain

∆e2p2

02 = (0.78 ± 0.83) + 0.54i, (7.31)

where we have added the various errors in quadrature.
For the radiative factors the calculation cannot be done in a
fully analytic form and we employ Monte Carlo integration
to deal with the real photon contribution to δ+−. We find

∆+− = −0.81 · 10−2,

δ+− = 0.09 · 10−2. (7.32)

Using these input values in (7.29), we arrive at

γ0 = −0.2◦,

γ2 = (6 ± 3)◦. (7.33)

The conclusion is that the optical theorem estimate of
γ0−γ2 agrees roughly with the perturbative estimate (7.21)
and that it tends to worsen the discrepancy between the
theoretical prediction of δ0 − δ2 [53] and its phenomeno-
logical extraction from K → ππ decays. Explicitly one has

(δ0 − δ2)ππ→ππ = (47.7 ± 1.5)◦,

(δ0 − δ2)K→ππ (7.34)

= (60.8 ± 2.2(exp) ± 0.9(νχ) ± 3.0(γ2))◦.

Although the precise KLOE measurement [9] of the ratio
of KS → ππ rates has considerably improved the situation
we still obtain a difference of about 13◦ for the phase shift
difference in the isospin limit between the two determi-
nations in (7.34). The theoretical error is much bigger in
the present case due to uncertainties in the NLO LECs.
However, we observe that more than half of this difference
is due to the ∆I = 5/2 loop amplitude that depends only
on the well-established lowest-order electromagnetic LEC
Z in the Lagrangian (2.8). In order to obtain a phase shift
difference in the isospin limit below 50◦, the local ampli-
tude with ∆I = 5/2 would have to be more than twice as
big and of opposite sign. While such an explanation cannot
be totally excluded at this time, the discrepancy in the two
entries of (7.34) certainly warrants further study.

The ∆I = 5/2 amplitude induced by isospin violation
in the octet amplitude is small because it only arises at NLO
and it is of purely electromagnetic origin. One may wonder
whether isospin violation in the 27-plet amplitude, which
occurs already at leading order, could compete. Whereas
isospin violating contributions to the ∆I = 1/2, 3/2 am-
plitudes proportional to G27 are certainly negligible, the
effect on the ∆I = 5/2 amplitude is worth investigating.

It is straightforward to calculate isospin violation in the
LO 27-plet amplitudes in (3.6) due to mass differences and
π0–η mixing. We are only interested in the resulting ∆I =
5/2 amplitude, entirely due to the quark mass difference:

A(27)
5/2 =

2
√

3
9

G27Fπ(M2
K − M2

π) ε(2) . (7.35)

This amplitude may now be compared to the corresponding
5/2 amplitude in (4.6):

A5/2 = −e2G8F
3
π (A(γ)

5/2 + ZA(Z)
5/2) . (7.36)
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With the numerical information of Table 3 and (7.12), we
obtain for the ratio

A(27)
5/2

Disp A5/2
� 6 · 10−2 . (7.37)

The conclusion is that the 27-plet contribution to the ∆I =
5/2 amplitude is of the same sign and only about 6% of
the octet contribution. The impact on the ∆I = 1/2, 3/2
amplitudes is of course much smaller still. Isospin violation
in the 27-plet amplitude can safely be neglected.

8 Phenomenology II: CP violation

The main contents of this section have already been pub-
lished in [57]. They are included here for completeness.

8.1 Isospin violation and ε′

The direct CP violation parameter ε′ is given by

ε′ = − i√
2

ei(χ2−χ0) Re A2

Re A0

[
Im A0

Re A0
− Im A2

Re A2

]
. (8.1)

The expression (8.1) is valid to first order in CP violation.
Since Im AI is CP -odd the quantities ReAI and χI are
only needed in the CP limit (I = 0, 2).

To isolate the isospin breaking corrections in ε′, we write
the amplitudes A0, A2 more explicitly as

A0 eiχ0 = A(0)
1/2 + δA1/2,

A2 eiχ2 = A(0)
3/2 + δA3/2 + A5/2, (8.2)

where the superscript (0) denotes the isospin limit and
δA1/2,3/2, A5/2 are first order in isospin violation. In the
limit of isospin conservation, the amplitudes A∆I would
be generated by the ∆I component of the electroweak
effective Hamiltonian.

To the order we are considering, the amplitudes A∆I

have both absorptive and dispersive parts. To disentangle
the (CP conserving) phases generated by the loop ampli-
tudes from the CP violating phases of the various LECs,
we express our results explicitly in terms of Disp A∆I and
Abs A∆I . Writing (8.2) in the generic form

AIeiχI = An ≡ A(0)
n + δAn, (8.3)

we obtain to first order in CP violation:

Re AI =
√

(Re [DispAn])2 + (Re [AbsAn])2,

Im AI = (Re AI)−1

× (Im [DispAn] Re [DispAn]+Im [AbsAn] Re [AbsAn]) ,

eiχI = (Re AI)−1(Re [DispAn] + i Re [AbsAn]) . (8.4)

Using the second equality in (8.3), one can now expand
Re AI and Im AI to first order in isospin breaking. With
the notation

|A(0)
n | =

√
(Re

[
DispA(0)

n

]
)2 + (Re

[
AbsA(0)

n

]
)2,

we find

Re AI =
∣∣∣A(0)

n

∣∣∣
+

∣∣∣A(0)
n

∣∣∣−1 {
Re

[
DispA(0)

n

]
Re [Disp δAn]

+ Re
[
AbsA(0)

n

]
Re [Abs δAn]

}
, (8.5)

Im AI =
∣∣∣A(0)

n

∣∣∣−1 {
Im

[
DispA(0)

n

]
Re

[
DispA(0)

n

]
+ Im

[
AbsA(0)

n

]
Re

[
AbsA(0)

n

]}
+

∣∣∣A(0)
n

∣∣∣−1 {
Im [Disp δAn] Re

[
DispA(0)

n

]
+ Im

[
DispA(0)

n

]
Re [Disp δAn]

+ Im [Abs δAn] Re
[
AbsA(0)

n

]
+ Im

[
AbsA(0)

n

]
Re [Abs δAn]

}
−

∣∣∣A(0)
n

∣∣∣−3 {
Re

[
DispA(0)

n

]
Re [Disp δAn]

+ Re
[
AbsA(0)

n

]
Re [Abs δAn]

}
×

{
Im

[
DispA(0)

n

]
Re

[
DispA(0)

n

]
+ Im

[
AbsA(0)

n

]
Re

[
AbsA(0)

n

]}
, (8.6)

where the first term in each equation above represents
Re A

(0)
I and Im A

(0)
I , respectively.

We now turn to the different sources of isospin viola-
tion in the expression (8.1) for ε′. We disregard the phase
which can be obtained from the K → ππ branching ra-
tios. The same branching ratios are usually employed to
extract the ratio ωS = Re A2/ Re A0 assuming isospin con-
servation. Accounting for isospin violation via the gen-
eral parametrization (2.3), one is then really evaluating
ω+ = Re A+

2 / Re A0 rather than ωS. The two differ by a
pure ∆I = 5/2 effect:

ωS = ω+
(
1 + f5/2

)
, (8.7)

f5/2 =
Re A2

Re A+
2

− 1. (8.8)

Because ω+ is directly related to branching ratios it proves
useful to keep ω+ in the normalization of ε′, introducing
the ∆I = 5/2 correction f5/2 [5].

Since Im A2 is already first order in isospin breaking the
formula for ε′ takes the following form, with all first-order
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isospin violating corrections made explicit:

ε′ =− i√
2
ei(χ2−χ0)ω+

[
Im A

(0)
0

Re A
(0)
0

(1 + ∆0 + f5/2)−
Im A2

Re A
(0)
2

]
,

(8.9)
where

∆0 =
Im A0

Im A
(0)
0

Re A
(0)
0

Re A0
− 1. (8.10)

With the help of (8.5) and (8.6), one obtains

Im A
(0)
0 =

∣∣∣A(0)
1/2

∣∣∣−1 {
Im

[
DispA(0)

1/2

]
Re

[
DispA(0)

1/2

]
+ Im

[
AbsA(0)

1/2

]
Re

[
AbsA(0)

1/2

]}
, (8.11)

Im A2 =
∣∣∣A(0)

3/2

∣∣∣−1

×
{

Im
[
Disp

(
δA3/2 + A5/2

)]
Re

[
DispA(0)

3/2

]
+ Im

[
Abs

(
δA3/2 + A5/2

)]
Re

[
AbsA(0)

3/2

]}
,

(8.12)

∆0 = −2
∣∣∣A(0)

1/2

∣∣∣−2 {
Re

[
DispA(0)

1/2

]
Re

[
Disp δA1/2

]
+ Re

[
AbsA(0)

1/2

]
Re

[
Abs δA1/2

]}
+

{
Im

[
DispA(0)

1/2

]
Re

[
DispA(0)

1/2

]
+ Im

[
AbsA(0)

1/2

]
Re

[
AbsA(0)

1/2

]}−1

×
{

Im
[
Disp δA1/2

]
Re

[
DispA(0)

1/2

]
+ Im

[
DispA(0)

1/2

]
Re

[
Disp δA1/2

]
+ Im

[
Abs δA1/2

]
Re

[
AbsA(0)

1/2

]
+ Im

[
AbsA(0)

1/2

]
Re

[
Abs δA1/2

]}
, (8.13)

f5/2 =
5
3

∣∣∣A(0)
3/2

∣∣∣−2 {
Re

[
DispA(0)

3/2

]
Re

[
DispA5/2

]
+ Re

[
AbsA(0)

3/2

]
Re

[
AbsA5/2

]}
. (8.14)

These expressions are general results to first order in CP
and isospin violation but they are independent of the chiral
expansion. Working strictly to a specific chiral order, these
formulas simplify considerably. We prefer to keep them in
their general form but we will discuss later the numerical
differences between the complete and the systematic chi-
ral expressions. The differences are one indication for the
importance of higher-order chiral corrections.

Although ImA2 is itself first order in isospin breaking
we now make the usual (but scheme dependent) separation
of the electroweak penguin contribution to ImA2 from the
isospin breaking effects generated by other four-quark op-

erators:

Im A2 = Im Aemp
2 + Im Anon−emp

2 . (8.15)

In order to perform the above separation within the CHPT
approach, we have to identify the contribution of the elec-
troweak penguin to a given low-energy coupling. In other
words, we need a matching procedure between CHPT and
the underlying theory of electroweak and strong interac-
tions. Such a matching procedure is given here by working
at leading order in 1/Nc. Then, the electroweak LECs of
O(G8e

2pn) (n = 0, 2) in Im Anon−emp
2 must be calculated

by setting to zero the Wilson coefficients C7, C8, C9, C10
of electroweak penguin operators.

Splitting off the electromagnetic penguin contribution
to Im A2 in this way, we can now write ε′ in a more familiar
way as

ε′ = − i√
2
ei(χ2−χ0)ω+

[
Im A

(0)
0

Re A
(0)
0

(1 − Ωeff) − Im Aemp
2

Re A
(0)
2

]
,

(8.16)
where

Ωeff = ΩIB − ∆0 − f5/2, (8.17)

ΩIB =
Re A

(0)
0

Re A
(0)
2

· Im Anon−emp
2

Im A
(0)
0

. (8.18)

The quantity Ωeff includes all effects to leading order in
isospin breaking and it generalizes the more traditional pa-
rameter ΩIB. Although ΩIB is in principle enhanced by the
large ratio Re A

(0)
0 / Re A

(0)
2 the actual numerical analysis

shows all three terms in (8.17) to be relevant when both
strong and electromagnetic isospin violation are included.

8.2 Numerical results

We present numerical results for the following two cases:
[i.] We calculate Ωeff and its components for α = 0, i.e., we
keep only terms proportional to the quark mass difference
(strong isospin violation). In this case, there is a clean
separation of isospin violating effects in ImA2. We compare
the lowest-order result of O(mu − md) with the full result
of O[(mu − md)p2].
[ii.] Herewe include electromagnetic corrections, comparing
again O(mu − md, e

2p0) with O[(mu − md)p2, e2p2]. The
splitting between Im Aemp

2 and Im Anon−emp
2 is performed

at leading order in 1/Nc.
The LO entries depend on Re g8/ Re g27 as well as on

Im(g8gewk)/ Im g8. Subleading effects in 1/Nc are known
to be sizable for the LECs of leading chiral order. We will
therefore not use the large-Nc values for Re g8, Re g27 in the
numerical analysis but instead determine these couplings
from our fit to the K → ππ branching ratios.

The ratio Im(g8gewk)/ Im g8 is the other combination of
interest. In this case, existing calculations beyond factor-
ization [58] suggest that the size of 1/Nc effects is moderate,
roughly −(30 ± 15)%. As a consequence, it turns out that



388 V. Cirigliano et al.: Isospin breaking in K → ππ decays

Table 4. Isospin violating corrections for ε′ in units of 10−2.
The first two columns refer to strong isospin violation only
(mu �= md), the last two contain the complete results including
electromagnetic corrections. LO and NLO denote leading and
next-to-leading orders in CHPT. The small difference between
the value of f5/2 reported here and the one in (7.13) is due
to higher-order effects in isospin breaking (absent in this table
according to (8.14))

α = 0 α �= 0
LO LO+NLO LO LO+NLO

ΩIB 11.7 15.9 ± 4.5 18.0 ± 6.5 22.7 ± 7.6
∆0 −0.004 −0.41 ± 0.05 8.7 ± 3.0 8.4 ± 3.6
f5/2 0 0 0 8.3 ± 2.4
Ωeff 11.7 16.3 ± 4.5 9.3 ± 5.8 6.0 ± 7.7

the dominant uncertainty comes from the input parame-
ters in the factorized expressions. Finally, one also needs
the ratio Im(g8gewk)non−emp/ Im g8: in this case, leading
large-Nc implies −3.1 ± 1.8 (error due to input parame-
ters), while the calculation of [1] gives −1.0±0.5. Given the
overlap between the two ranges and the large error in the
large-Nc result, we use in the numerics the range implied
by leading large-Nc.

At NLO the quantities we need to evaluate depend
on the ratio of next-to-leading to leading-order LECs. In
Table 4, we use the leading 1/Nc estimates for the ratios
G8Ni/G8, . . . The final error for each of the quantities ΩIB,
∆0, f5/2 and Ωeff is obtained by adding in quadrature the
LO error and the one associated to weak LECs at NLO.
Moreover, only f5/2 and Re A

(0)
0 / Re A

(0)
2 depend on the

ratio g8/g27. In these cases we rely on the phenomenological
value implied by our fit. Some of the errors in Table 4 are
manifestly correlated, e.g., in the LO column for α �= 0.

The NLO results are obtained with the full expres-
sions (8.11)–(8.14). Using instead the simplified expres-
sions corresponding to a fixed chiral order, the modified
results are found to be well within the quoted error bars. We
therefore expect our errors to account also for higher-order
effects in the chiral expansion.

We have also employed an alternative procedure for es-
timating the non-leading weak LECs. In contrast to the pre-
vious analysis, we now apply large Nc directly to the LECs
G8Ni, . . . This amounts to assuming that the failure of large
Nc for G8 is specific to the leading chiral order and that
the non-leading LECs are not significantly enhanced com-
pared to the large-Nc predictions. Of course, this implies
that the local amplitudes of O(G8p

4) are less important
than in the previous case. Consequently, the fitted value for
g8 comes out quite a bit bigger than in (7.12), whereas g27
gets smaller (see Sect. 7.3). However, the isospin violating
ratios in Table 4 are very insensitive to those changes. Not
only are the numerical values in this case well within the
errors displayed in Table 4 but they are in fact very close
to the central values given there.

Finally, we have investigated the impact of some sub-
leading effects in 1/Nc [45]. Although this is not meant
to be a systematic expansion in 1/Nc, the nonet breaking

terms considered in [45] may furnish another indication
for the intrinsic uncertainties of some of the LECs. The
size of those terms depends on the assignment of isosinglet
scalar resonances. Since nonet breaking effects are large
in the scalar sector they affect most of the entries in Ta-
ble 4 in a non-negligible way, although always within the
quoted uncertainties. Employing scenario A for the lightest
scalar nonet [45], Ωeff in (8.16) decreases from 6.0 · 10−2

to −1.4 · 10−2.
The lessons to be drawn from our analysis of isospin vio-

lating corrections for ε′ are straightforward. Separate parts
of those corrections turn out to be sizable. A well-known
example is the contribution of strong isospin violation to
π0–η mixing where the sum of η and η′ exchange generates
an ΩIB of the order of 25% [59]. However, already at the
level of π0–η mixing alone, a complete calculation at next-
to-leading order [24] produces a destructive interference in
ΩIB. Additional contributions to the K → ππ amplitudes
from strong isospin violation at next-to-leading order essen-
tially cancel out. The final result ΩIB = (15.9± 4.5) · 10−2

is consistent within errors with the findings of [8]. Inclusion
of electromagnetic effects slightly increases ΩIB and gener-
ates sizable ∆0 and f5/2, which interfere destructively with
ΩIB to produce the final result Ωeff = (6.0 ± 7.7) · 10−2.

It turns out that ∆0 is largely dominated by electro-
magnetic penguin contributions. In those theoretical cal-
culations of ε′ where electromagnetic penguin contribu-
tions are explicitly included one may therefore drop ∆0
to a very good approximation. Finally, if all electromag-
netic corrections are included in theoretical calculations of
Im A0/ Re A0, Im A2/ Re A2 and Re A2/ Re A0, Ωeff is es-
sentially given by ΩIB. In this case, Ωeff = (16.3±4.5)·10−2

is practically identical to the result based on π0–η mixing
only [24].

9 Conclusions

In most processes isospin violation induces a small effect
on physical amplitudes. In K → ππ decays, however, it is
amplified by the ∆I = 1/2 rule: isospin breaking admix-
tures of the dominant ∆I = 1/2 amplitudes can generate
sizable corrections to ∆I > 1/2 amplitudes. Understand-
ing isospin violation is crucial for a quantitative analysis
of the ∆I = 1/2 rule itself and for a theoretical estimate
of ε′.

The theoretical description of K decays involves a deli-
cate interplay between electro-weak and strong interactions
in the confinement regime. Chiral perturbation theory pro-
vides a convenient framework for a systematic low-energy
expansion of the relevant amplitudes. In this paper we have
performed the first complete analysis of isospin violation in
K → ππ decays induced by the dominant octet operators
to NLO in CHPT. We have reported explicit expressions for
loop and counterterm amplitudes, verifying cancellation of
ultraviolet divergences at NLO.

On the phenomenological side, the main features and
results of this work are as follows.
(1) We have included for the first time both strong and
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electromagnetic isospin violation in a joint analysis.
(2) Non-leptonic weak amplitudes in CHPT depend on
a number of low-energy constants: we have used leading
large-Nc estimates for those constants which cannot be ob-
tained by a fit to K → ππ branching ratios (i.e., all NLO
couplings and the electroweak coupling of order e2G8p

0).
Uncertainties within this approach arise from (i) input pa-
rameters in the leading 1/Nc expressions as well as from
(ii) potentially large subleading effects in 1/Nc. We have
discussed the impact of both (i) and (ii) on the relevant
quantities.
(3) Using this large-Nc input, we have performed a fit to
the CP -even component of the couplings g8 and g27, both
without and with inclusion of isospin breaking. We find
that in general the inclusion of NLO effects (loops and
counterterms) has a significant impact on the output. The
main outcome of the NLO fit is that both g8 and g27 are only
mildly affected by isospin breaking (e.g., g27 gets shifted
upwards by only 2%). While this result is fully expected
for g8, in the case of g27 it arises from non-trivial cancel-
lations between LO and NLO corrections. For the ratio
measuring the ∆I = 1/2 enhancement in K0 decays we
find ReA0/ Re A2 = 20.3 ± 0.5, compared to 22.2 ± 0.1 in
the isospin limit.
(4) Using as input a NLO calculation of electromagnetic
corrections to ππ scattering [55,56], we have used the op-
tical theorem to study the effect of isospin breaking on the
final state-interaction phases [5]. According to our analysis,
isospin breaking leads to a discrepancy between the theo-
retical prediction [53] of δ0 − δ2 from pion–pion scattering
and its phenomenological extraction from K → ππ (see
also [5,6]). Before drawing a definite conclusion about the
possible presence of an additional ∆I = 5/2 amplitude,
more work is necessary to understand this discrepancy.
(5) We have studied the effect of isospin violation on the di-
rectCP violation observable ε′. In this case isospin breaking
affects the destructive interference between the two main
contributions to ε′ from normal and electromagnetic pen-
guin operators. Apart from the traditional term ΩIB, we
have identified and studied the effect of isospin violation
in Im A0/ Re A0, parametrized by the quantity ∆0 and the
purely electromagnetic ∆I = 5/2 amplitude. Both ∆0 and
the ∆I = 5/2 contribution f5/2 interfere destructively with
ΩIB to yield a final value Ωeff = (6.0 ± 7.7) · 10−2 for the
overall measure of isospin violation in ε′. If electromagnetic
penguin contributions are included in theoretical calcula-
tions of Im A0/ Re A0, ∆0 can be dropped in Ωeff to a very
good approximation. Finally, if all electromagnetic cor-
rections are included in ImA0/ Re A0, Im A2/ Re A2 and
Re A2/ Re A0, Ωeff is essentially determined by ΩIB and
is practically identical to the result based on π0–η mix-
ing only.
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A NLO effective Lagrangians

In this appendixwe collect the relevant parts of theNLOLa-
grangians.

First we recall our notation. The covariant derivative
of the matrix field U is denoted DµU , the external scalar
field χ accounts for explicit symmetry breaking through
the quark masses, the matrix λ = (λ6 − iλ7)/2 projects
onto the s̄ → d̄ transition and

Q = diag(2/3, −1/3, −1/3)

is the quark charge matrix. For compactness of notation,
we introduce the definitions

χU
+ = U†χ + χ†U, χU

− = U†χ − χ†U, QU = U†QU.
(A.1)

Starting with the strong Lagrangian (2.5), we have the
familiar terms [11]∑

i

Li Op4

i = L4〈DµU†DµU〉〈χU
+〉 + L5〈DµU†DµUχU

+〉

+ L7〈χU
−〉2+L8〈χ†Uχ†U + χU†χU†〉+ . . .

(A.2)

For the explicit form of the strong Lagrangian of O(p6) we
refer to [13].

The electromagnetic Lagrangian (2.8) is explicitly given
by [19]∑

i

KiO
e2p2

i = K1〈DµU†DµU〉〈Q2〉

+ K2〈DµU†DµU〉〈QQU 〉

+ K3(〈DµU†QU〉2 + 〈DµUQU†〉2)

+ K4〈DµU†QU〉〈DµUQU†〉 + K5〈
{
DµU†, DµU

}
Q2〉

+ K6〈DµU†DµUQU†QU + DµUDµU†QUQU†〉

+ K7〈χU
+〉〈Q2〉 + K8〈χU

+〉〈QQU 〉

+ K9〈(χ†U + U†χ)Q2 + (χU† + Uχ†)Q2〉

+ K10〈(χ†U + U†χ)QU†QU + (χU† + Uχ†)QUQU†〉

+ K11〈(χ†U − U†χ)QU†QU

+ (χU† − Uχ†)QUQU†〉

+ K12〈DµU†[DµQR, Q]U + DµU [DµQL, Q]U†〉

+ K13〈DµQRUDµQLU†〉, (A.3)

with (lµ and rµ denote external spin-1 fields)

DµQL = ∂µQ− i[lµ, Q], DµQR = ∂µQ− i[rµ, Q]. (A.4)
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Turning to the non-leptonic weak Lagrangian, we first
display the octet couplings in the notation of [16]:∑

i

NiO
8
i = N5〈λ

{
χU

+, DµU†DµU
}
〉

+ N6〈λDµU†U〉〈U†DµUχU
+〉 + N7〈λχU

+〉〈DµU†DµU〉

+ N8〈λDµU†DµU〉〈χU
+〉 + N9〈λ[χU

−, DµU†DµU ]〉

+ N10〈λ(χU
+)2〉 + N11 〈λχU

+〉〈χU
+〉 + N12〈λ(χU

−)2〉

+ N13〈λχU
−〉〈χU

−〉 + . . . (A.5)

The corresponding 27-plet couplings [15] are∑
i

DiO
27
i

= D1tij,kl〈λijχ
U
+〉〈λklχ

U
+〉 + D2tij,kl〈λijχ

U
−〉〈λklχ

U
−〉

− D4tij,kl〈λijU
†DµU〉〈λkl

{
χU

+, U†DµU
}
〉

+ D5tij,kl〈λijU
†DµU〉〈λkl[χU

−, U†DµU ]〉

+ D6tij,kl〈λijχ
U
+〉〈λklDµU†DµU〉

− D7tij,kl〈λijU
†DµU〉〈λklU

†DµU〉〈χU
+〉, (A.6)

with (λij)ab = δiaδjb. The non-zero components of tij,kl

are given by (i, j, k, l = 1, 2, 3)

t21,13 = t13,21 = t23,11 = t11,23 =
1
3
,

t22,23 = t23,22 = t23,33 = t33,23 = −1
6
. (A.7)

Finally, the relevant part of the electroweak Lagrangian of
O(e2G8p

2) [22] is∑
i

ZiO
EW
i = Z1〈λ

{
QU , χU

+
}
〉 + Z2〈λQU 〉〈χU

+〉

+ Z3〈λQU 〉〈χU
+QU 〉 + Z4〈λχU

+〉〈QQU 〉

+ Z5〈λDµU†DµU〉 + Z6〈λ
{
QU , DµU†DµU

}
〉

+ Z7〈λDµU†DµU〉〈QQU 〉 + Z8〈λDµU†U〉〈QU†DµU〉

+ Z9〈λDµU†U〉〈QUU†DµU〉

+ Z10〈λDµU†U〉〈{Q, QU} U†DµU〉

+ Z11〈λ
{
QU , U†DµU

}
〉〈QDµU†U〉

+ Z12〈λ
{
QU , U†DµU

}
〉〈QUDµU†U〉 + . . . (A.8)

B Explicit form of NLO loop amplitudes

In this appendix we report explicit expressions for the NLO
loop corrections ∆LA(X)

n appearing in the master formulas
of (4.6) and (4.7).

B.1 Photonic amplitudes

Let us start with the terms arising from exchange of vir-
tual photons. The amplitude A+− is infrared divergent and
is regulated by introducing a fictitious photon mass Mγ .
Moreover, it is convenient to work with a subtracted am-
plitude, after removing the infrared component AIR

+− (see
discussion in Sect. 4). The function B+−(Mγ) appearing
in our definition of the infrared-divergent amplitude AIR

+−
(see (4.5)) is given by

B+−(Mγ)

=
1
4π

[
2a(β) log

M2
π

M2
γ

+
1 + β2

2β
h(β) + 2 + β log

1 + β

1 − β

+iπ
(

1 + β2

β
log

M2
Kβ2

M2
γ

− β

)]
, (B.1)

where

β = (1 − 4M2
π/M2

K)1/2,

a(β) = 1 +
1 + β2

2β
log

1 − β

1 + β
,

h(β) = π2 + log
1 + β

1 − β
log

1 − β2

4β2

+ 2f

(
1 + β

2β

)
− 2f

(
β − 1
2β

)
,

f(x) = −
∫ x

0
dt

1
t

log |1 − t|. (B.2)

The amplitudes ∆LA(γ)
n are given by

∆LA(γ)
1/2

=
√

2
(4πFπ)2

[
−14

3
M2

π + 2M2
K

(
1 + log

M2
π

ν2
χ

)]

+
4
√

2M2
K

F 2
π

Λ(νχ), (B.3)

∆LA(γ)
3/2

=
1

(4πFπ)2

[
−14

3
M2

π

+
4
5

(
M2

K +
3
2
M2

π

) (
1 + log

M2
π

ν2
χ

)]
+

8
5F 2

π

(
M2

K +
3
2
M2

π

)
Λ(νχ), (B.4)

∆LA(γ)
5/2

=
6
5

M2
K − M2

π

(4πFπ)2

(
1 + log

M2
π

ν2
χ

)

+
12(M2

K − M2
π)

5F 2
π

Λ(νχ). (B.5)

The divergent factor Λ(νχ) is defined in (2.11).
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B.2 Non-photonic amplitudes

The mesonic loop corrections can be expressed in terms of
the following basic function (and its derivatives):

J(p2, M2
1 , M2

2 ) =
1
i

∫
ddk

(2π)d

1
[k2 − M2

1 ] [(k − p)2 − M2
2 ]

= J̄(p2, M2
1 , M2

2 ) + J(0, M2
1 , M2

2 ). (B.6)

The subtraction term is given by

J(0, M2
1 , M2

2 ) =
M2

1 T (M2
1 ) − M2

2 T (M2
2 )

M2
1 − M2

2

− 2Λ(νχ), (B.7)

T (M2) = − 1
(4π)2

log
M2

ν2
χ

. (B.8)

Expansion around the neutral meson masses generates
terms involving derivatives of the function J̄(p2, M2

1 , M2
2 ).

In order to deal with such terms we use the notation

J̄ (1,0,0)(p2, M2
1 , M2

2 ) =
∂

∂p2 J̄(p2, M2
1 , M2

2 ),

J̄ (0,1,0)(p2, M2
1 , M2

2 ) =
∂

∂M2
1

J̄(p2, M2
1 , M2

2 ),

J̄ (0,0,1)(p2, M2
1 , M2

2 ) =
∂

∂M2
2

J̄(p2, M2
1 , M2

2 ). (B.9)

We report below the explicit form of the relevant functions.
For this purpose we define

λ(t, x, y) =
[
t −

(√
x +

√
y
)2

] [
t −

(√
x − √

y
)2

]
(B.10)

and

Σ12 = M2
1 + M2

2 , ∆12 = M2
1 − M2

2 . (B.11)

Then

J̄(p2, M2
1 , M2

2 )

=
1

32π2

[
2 +

∆12

p2 log
M2

2

M2
1

− Σ12

∆12
log

M2
2

M2
1

−λ1/2(p2, M2
1 , M2

2 )
p2

× log

([
p2 + λ1/2(p2, M2

1 , M2
2 )

]2 − ∆2
12[

p2 − λ1/2(p2, M2
1 , M2

2 )
]2 − ∆2

12

)]
,

J̄(p2, M2, M2) =
1

16π2

[
2 − σ log

(
σ + 1
σ − 1

)]
,

σ ≡
√

λ (1, M2/p2, M2/p2). (B.12)

The relevant derivative functions are reported below (re-
calling the symmetry property10 J̄ (0,1,0)(p2, M2

1 , M2
2 ) =

10 In the equal mass case we adopt the definition
J̄(0,0,1)(p2, M2, M2) ≡ limM2→M J̄(0,0,1)(p2, M2

2 , M2) =
1
2

∂
∂M2 J̄(p2, M2, M2).

J̄ (0,0,1)(p2, M2
2 , M2

1 )):

J̄ (1,0,0)(p2, M2
1 , M2

2 )

=
1

32π2

{
− 2

p2 − ∆12

(p2)2
log

M2
2

M2
1

− (p2 Σ12 − ∆2
12)

(p2)2λ1/2(p2, M2
1 , M2

2 )

× log
(

Σ12 − p2 − λ1/2(p2, M2
1 , M2

2 )
Σ12 − p2 + λ1/2(p2, M2

1 , M2
2 )

)}
,

J̄ (0,0,1)(p2, M2
1 , M2

2 )

=
1

32π2

{
− 2

∆12
− ∆2

12 + 2M2
1 p2

p2∆2
12

log
M2

2

M2
1

+
p2 + ∆12

p2λ1/2(p2, M2
1 , M2

2 )

× log
(

Σ12 − p2 − λ1/2(p2, M2
1 , M2

2 )
Σ12 − p2 + λ1/2(p2, M2

1 , M2
2 )

)}
,

J̄ (0,0,1)(p2, M2, M2)

=
1

32π2

{
1

M2 +
2

p2 σ
log

(
σ + 1
σ − 1

)}
. (B.13)

We expand all our amplitudes around the neutral pion and
kaon masses Mπ and MK to define the isospin limit (see [60]
for a more general discussion of the splitting between strong
and electromagnetic contributions). This applies also to the
η mass given in (3.4). Therefore, in all (loop) amplitudes
where M2

η appears explicitly it actually stands for (4M2
K −

M2
π)/3 instead of the physical value in (3.4). This concerns

all loop functions in Appendix B and C.

B.2.1 ∆I = 1/2 amplitudes

In this section we list the one-loop corrections to the ∆I =
1/2 amplitude:

∆LA(27)
1/2 = − M2

π

2F 2
π

J̄(M2
K , M2

η , M2
η )

+

(
2 M2

K − M2
π

)
2 F 2

π

J̄(M2
K , M2

π , M2
π)

+
M4

K

3F 2
πM2

π

J̄(M2
π , M2

K , M2
η )

−
M2

K

(
M2

K − 4 M2
π

)
4 F 2

π M2
π

J̄(M2
π , M2

K , M2
π)

−
3

(
12M4

K − 11M2
KM2

π + 3M4
π

)
8F 2

π (−M2
K + M2

π)
T (M2

η )

+

(
6M4

K − 11M2
KM2

π

)
4F 2

π (M2
K − M2

π)
T (M2

K) (B.14)

+

(
8M4

K − 35M2
KM2

π + 25M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π) − M2
K − M2

π

16F 2
ππ2 ,
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∆LA(8)
1/2 =

M2
π

18F 2
π

J̄(M2
K , M2

η , M2
η )

+

(
2M2

K − M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

− M4
K

12F 2
πM2

π

J̄(M2
π , M2

K , M2
η )

−
(
M4

K − 4M2
KM2

π

)
4F 2

πM2
π

J̄(M2
π , M2

K , M2
π)

−
(
36M4

K − 73M2
KM2

π + 19 M4
π

)
72F 2

π (M2
K − M2

π)
T (M2

η )

+
M2

K

4F 2
π

T (M2
K) +

(
8M4

K − 35M2
KM2

π + 25M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π)

+
−9M2

K + 4M2
π

144F 2
ππ2 , (B.15)

∆LA(ε)
1/2 =

5M2
π

6F 2
π

J̄(M2
K , M2

η , M2
η )

+
3 M2

K

2 F 2
π

J̄(M2
K , M2

K , M2
K)

+

(
5M2

K − 6M2
π

)
3F 2

π

J̄(M2
K , M2

π , M2
η )

+

(
2M2

K − M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

−
(
3M4

K − 4M2
KM2

π

)
12F 2

πM2
π

J̄(M2
π , M2

K , M2
η )

−
(
M4

K − 2M2
KM2

π

)
F 2

πM2
π

J̄(M2
π , M2

π , M2
K)

−
(
22M4

K − 71M2
KM2

π + 43M4
π

)
12F 2

π (M2
K − M2

π)
T (M2

η )

+
5 M2

K M2
π

4 F 2
π (M2

K − M2
π)

T (M2
K)

+

(
4M4

K − 11M2
KM2

π

)
4F 2

π (M2
K − M2

π)
T (M2

π)

+
−8M4

K − 22M2
KM2

π + 7M4
π

32F 2
π (4M2

K − M2
π) π2

+
4M2

π

(
M2

K − M2
π

)
9F 2

π

J̄ (0,0,1)(M2
K , M2

η , M2
η )

−
M4

K

(
M2

K − M2
π

)
3F 2

πM2
π

(B.16)

×
[
J̄ (0,0,1)(M2

π , M2
K , M2

η ) + J̄ (0,1,0)(M2
π , M2

K , M2
η )

]
,

∆LA(Z)
1/2 = −3 M2

K

8F 2
π

J̄(M2
K , M2

K , M2
K)

−
(
2M2

K − 3M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

−
(
2M6

K + 5M4
KM2

π − 4M2
KM4

π

)
24F 2

πM4
π

J̄(M2
π , M2

K , M2
η )

−
(
M6

K − 4M2
KM4

π

)
4F 2

πM4
π

J̄(M2
π , M2

K , M2
π)

+
M2

π

(
4M2

K − M2
π

)
8F 2

π (M2
K − M2

π)
T (M2

η )

−
3

(
7M4

K − 7M2
KM2

π + M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

K)

+

(
7M2

K − 18M2
π

)
8F 2

π

T (M2
π)

+
8M4

K − 13M2
KM2

π + 2M4
π

128F 2
πM2

ππ2

−
(
2M4

K − 3M2
KM2

π + M4
π

)
F 2

π

J̄ (0,0,1)(M2
K , M2

π , M2
π)

+

(
M6

K − 5M4
KM2

π + 4M2
KM4

π

)
4F 2

πM2
π

×
[
J̄ (0,0,1)(M2

π , M2
K , M2

π) + J̄ (1,0,0)(M2
π , M2

K , M2
π)

]
+

(
M6

K − M4
KM2

π

)
12F 2

πM2
π

(B.17)

×
[
J̄ (0,1,0)(M2

π , M2
K , M2

η ) + J̄ (1,0,0)(M2
π , M2

K , M2
η )

]
,

∆LA(g)
1/2 = −3M2

K

8F 2
π

J̄(M2
K , M2

K , M2
K)

+

(
2 M2

K − M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

− M4
K

8 F 2
π M2

π

J̄(M2
π , M2

K , M2
η )

−
(
M4

K − 4M2
KM2

π

)
4F 2

πM2
π

J̄(M2
π , M2

K , M2
π)

−
(
8M4

K − 6M2
KM2

π + M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

η )

+

(
2M4

K + 7M2
KM2

π

)
8F 2

π (M2
K − M2

π)
T (M2

K)

+

(
8M4

K − 35M2
KM2

π + 21M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π)

+
−5M2

K + 4M2
π

128F 2
ππ2 . (B.18)
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B.2.2 ∆I = 3/2 amplitudes

In this section we list the one-loop corrections to the ∆I =
3/2 amplitude:

∆LA(27)
3/2 = −

(
M2

K − 2M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

− M4
K

24F 2
πM2

π

J̄(M2
π , M2

K , M2
η )

−
M2

K

(
5M2

K − 8M2
π

)
8F 2

πM2
π

J̄(M2
π , M2

K , M2
π) (B.19)

+
M2

π

(
4M2

K − M2
π

)
8F 2

π (M2
K − M2

π)
T (M2

η ) +

(
3M4

K + M2
KM2

π

)
4F 2

π (M2
K − M2

π)
T (M2

K)

−
(
4M4

K − 22M2
KM2

π + 29M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π) +
M2

K − 2M2
π

32F 2
ππ2 ,

∆LA(ε)
3/2 =

M2
K

6F 2
π

J̄(M2
K , M2

π , M2
η )

−
(
M2

K − 2M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

−
(
21M4

K − 8M2
K M2

π

)
24F 2

πM2
π

J̄(M2
π , M2

K , M2
η )

−
(
11M4

K − 16M2
KM2

π

)
8F 2

πM2
π

J̄(M2
π , M2

π , M2
K)

−
(
44M4

K − 47M2
KM2

π + 9M4
π

)
24F 2

π (M2
K − M2

π)
T (M2

η )

−
(
12M4

K − 17M2
KM2

π

)
4F 2

π (M2
K − M2

π)
T (M2

K)

−
(
4M4

K − 11M2
KM2

π + 15M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π)

+
2M2

K − M2
π

16F 2
ππ2

+
M4

K

(
M2

K − M2
π

)
6F 2

πM2
π

J̄ (0,1,0)(M2
π , M2

K , M2
η ), (B.20)

∆LA(Z)
3/2 = −

(
13M2

K − 18M2
π

)
10F 2

π

J̄(M2
K , M2

π , M2
π)

−
(
10M6

K + 13M4
KM2

π − 32M2
KM4

π + 24M6
π

)
120F 2

πM4
π

×J̄(M2
π , M2

K , M2
η )

−
(
10M6

K + 3M4
KM2

π − 28M2
KM4

π

)
40F 2

πM4
π

J̄(M2
π , M2

K , M2
π)

+

(
48M4

K − 40M2
K M2

π + 7M4
π

)
40F 2

π (M2
K − M2

π)
T (M2

η )

−
3

(
21M4

K − 20M2
KM2

π

)
20 F 2

π (M2
K − M2

π)
T (M2

K)

−
(
58M4

K − 22M2
KM2

π − 27M4
π

)
40F 2

π (M2
K − M2

π)
T (M2

π)

+
−M4

K + 14M2
KM2

π − 10M4
π

80F 2
πM2

ππ2

+
2

(
M4

K − 3M2
KM2

π + 2M4
π

)
5F 2

π

J̄ (0,0,1)(M2
K , M2

π , M2
π)

+

(
5M6

K − 13M4
KM2

π + 8M2
KM4

π

)
20F 2

πM2
π

×
[
J̄ (1,0,0)(M2

π , M2
K , M2

π) + J̄ (0,0,1)(M2
π , M2

K , M2
π)

]
+

(
M6

K − M4
KM2

π

)
12F 2

πM2
π

(B.21)

×
[
J̄ (0,1,0)(M2

π , M2
K , M2

η ) + J̄ (1,0,0)(M2
π , M2

K , M2
η )

]
,

∆LA(g)
3/2 = −

(
M2

K − 2M2
π

)
2F 2

π

J̄(M2
K , M2

π , M2
π)

− M4
K

8F 2
π M2

π

J̄(M2
π , M2

K , M2
η )

−
(
5M4

K − 8M2
KM2

π

)
8F 2

πM2
π

J̄(M2
π , M2

K , M2
π)

−
(
8M4

K − 6M2
KM2

π + M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

η )

−
(
2M4

K − 5M2
KM2

π

)
4F 2

π (M2
K − M2

π)
T (M2

K) (B.22)

−
(
4M4

K + 2M2
KM2

π − 3M4
π

)
8F 2

π (M2
K − M2

π)
T (M2

π) +
M2

K − 2M2
π

32F 2
ππ2 .

B.2.3 ∆I = 5/2 amplitudes

In this section we report the one-loop ∆I = 5/2 amplitude
generated by insertions of e2p0 vertices from Lelm:

∆LA(Z)
5/2 = −

8
(
M2

K − M2
π

)
5F 2

π

J̄(M2
K , M2

π , M2
π)

−
2

(
M4

K − M2
KM2

π

)
5F 2

πM2
π

J̄(M2
π , M2

K , M2
π)

−
2

(
M4

K + M2
K M2

π − 2M4
π

)
15F 2

πM2
π

J̄(M2
π , M2

K , M2
η )

−
2

(
4M2

K − M2
π

)
5F 2

π

T (M2
η ) − 4M4

K

5F 2
π (M2

K − M2
π)

T (M2
K)

−
2

(
6M4

K − 19M2
KM2

π + 11M4
π

)
5F 2

π (M2
K − M2

π)
T (M2

π)

+
−M4

K + 9M2
KM2

π − 10M4
π

40F 2
πM2

ππ2
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+
4

(
M4

K − 3M2
KM2

π + 2M4
π

)
5F 2

π

J̄ (0,0,1)(M2
K , M2

π , M2
π)

−
4

(
M4

K − M2
KM2

π

)
5F 2

π

(B.23)

×
[
J̄ (0,0,1)(M2

π , M2
K , M2

π) + J̄ (1,0,0)(M2
π , M2

K , M2
π)

]
.

B.2.4 Divergent parts

For completeness, we list here the divergent parts of the
mesonic loop amplitudes. We have checked explicitly that
they get absorbed by the independently known renormal-
ization of NLO chiral couplings.[

∆LA(27)
1/2

]
div

=
−28M2

K + 17M2
π

2F 2
π

Λ(νχ),

[
∆LA(8)

1/2

]
div

=
−27M2

K + 103M2
π

18F 2
π

Λ(νχ),

[
∆LA(ε)

1/2

]
div

=
10M2

K − 43M2
π

6F 2
π

Λ(νχ),

[
∆LA(Z)

1/2

]
div

=
7(M2

K + M2
π)

2F 2
π

Λ(νχ),

[
∆LA(g)

1/2

]
div

=
−M2

K + 10M2
π

2F 2
π

Λ(νχ),

[
∆LA(27)

3/2

]
div

=
−M2

K − 15M2
π

2F 2
π

Λ(νχ),

[
∆LA(ε)

3/2

]
div

=
64M2

K − 27M2
π

6F 2
π

Λ(νχ),

[
∆LA(Z)

3/2

]
div

=
17(4M2

K + M2
π)

10F 2
π

Λ(νχ),

[
∆LA(g)

3/2

]
div

=
8M2

K + M2
π

2F 2
π

Λ(νχ),

[
∆LA(Z)

5/2

]
div

=
48(M2

K − M2
π)

5F 2
π

Λ(νχ). (B.24)

C Alternative convention for LO LECs

In the effective chiral Lagrangians of Sect. 2.2, the meson
decay constant in the chiral limit F is the only dimensionful
parameter in addition to the Fermi coupling constant GF.
This is the original convention of Cronin [14] for the non-
leptonic weak Lagrangian of lowest order and it is used
throughout this work. It has definite advantages, e.g., for
the renormalization of the various Lagrangians.

However, this convention has a certain aesthetic draw-
back in that the K → 2π amplitudes (the K → 3π am-
plitudes as well, for that matter) depend at NLO on the
strong LECs L4 and L5 even in the isospin limit. These
LECs account for the renormalization of F to Fπ and FK

at NLO. The associated uncertainties propagate into the

uncertainties of the LO LECs G8, . . . Since Fπ and FK

are much better known than F , it may be useful for phe-
nomenological purposes to redefine the LO LECs so that
they are then free of the uncertainties in Lr

4, L
r
5.

A first step consists in generalizing the convention first
used in [15], albeit with a different notation:

Ḡ8 = G8F
4/F 4

π , Ḡ27 = G27F
4/F 4

π ,

ḡewk = gewkF
2/F 2

π , Z̄ = ZF 2/F 2
π . (C.1)

At lowest order, the barred quantities are identical to the
original unbarred ones because we always set F = Fπ at
lowest order. Writing the NLO amplitudes (4.6) in terms
of the barred LECs of lowest order, the strong LEC Lr

4
disappears completely from all K → 2π amplitudes. To
get rid of Lr

5 as well (at least in the isospin limit), one
can introduce a scale factor Fπ/FK [50]. The amplitudes
of (4.6) then take the following form:

An = Ḡ27Fπ

(
M2

K − M2
π

)
Ā(27)

n (C.2)

+ Ḡ8Fπ

{(
M2

K − M2
π

) [
Ā(8)

n + ε(2)Ā(ε)
n

]
− e2F 2

π

[
A(γ)

n + Z̄Ā(Z)
n + ḡewkĀ(g)

n

]}
,

where

Ā(X)
n =

a
(X)
n

Fπ

FK

[
1 + ∆LĀ(X)

n + ∆CĀ(X)
n

]
if a

(X)
n �= 0,

∆LA(X)
n + ∆CA(X)

n if a
(X)
n = 0.

(C.3)
The change in notation only affects those amplitudes that
are non-zero at lowest order.

The amplitudes Ā(X)
n are related to the original A(X)

n as
follows (only amplitudes for n = 1/2 or 3/2 are affected):

for X = 27, 8, ε :

∆CĀ(X)
n = ∆CA(X)

n |∆̃C=Lr
4=0

+
24(M2

K − M2
π)

F 2
π

Lr
5(νχ)δn,1/2δX,ε,

∆LĀ(X)
n = ∆LA(X)

n + ∆K + 3∆π

− 3
2
(EK + 3Eπ)δn,1/2δX,ε; (C.4)

for X = Z, g :

∆CĀ(X)
n = ∆CA(X)

n |
∆̃

(ew)
C =0,

∆LĀ(X)
n = ∆LA(X)

n + ∆K + 5∆π. (C.5)

From the definitions of Fπ and FK± in [27] one obtains
[T (M2) is defined in (B.8) andM2

η stands for (4M2
K−M2

π)/3
as in all loop amplitudes]

∆π =
M2

π

F 2
π

T (M2
π) +

M2
K

2F 2
π

T (M2
K),

∆K =
3M2

π

8F 2
π

T (M2
π) +

3M2
K

4F 2
π

T (M2
K)
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+
(4M2

K − M2
π)

8F 2
π

T (M2
η ),

Eπ = − (M2
K − M2

π)
F 2

π

T (M2
K) +

(M2
K − M2

π)
(4π)2F 2

π

,

EK =
3M2

π

4F 2
π

T (M2
π) − 2(M2

K − M2
π)

F 2
π

T (M2
K) (C.6)

− (8M2
K − 5M2

π)
4F 2

π

T (M2
η ) +

3(M2
K − M2

π)
(4π)2F 2

π

.

As can be seen from (C.2)–(C.6), Lr
4 has disappeared com-

pletely from the amplitudes An whereas Lr
5 occurs only

in the isospin violating amplitude ∆CĀ(ε)
1/2. In spite of

its conceptual advantages, we have not used this alter-
native convention in this paper because L4, L5 reappear
anyway through the large-Nc relations for the NLO LECs
Ni, Di, Zi. Moreover, the large-Nc relations for g8, g27 and
gewk would also be affected. Finally, consistent with the
expansion to leading order in 1/Nc, Lr

4 and Lr
5 are set equal

to their large-Nc limits as discussed in Sect. 5.3.

D Details on the optical theorem analysis

In this appendix we report the explicit form of functions
needed when studying the unitarity condition in the pres-
ence of isospin breaking. Let us start with the IR diver-
gent factors:

Bππ = B+−(Mγ) (see (B.1)) (D.1)

Cππ = 16π
[
(u − 2M2

π)G+−γ(u) − (t − 2M2
π)G+−γ(t)

]
.

(D.2)

The definition of the kinematical variables t, u and the
function G+−γ(x) can be found in [55,56].

In order to define the remaining ingredients, we need to
fix the notation. The four-momenta are denoted as follows:

K(P ) −→ π+(q+) π−(q−) γ(k) −→ π+(p+) π−(p−) .

The differential phase space is then given by

dΦ+−γ =
d3q+

(2π)32q0
+

d3q−
(2π)32q0−

d3k

(2π)32k0 (D.3)

× (2π)4δ(4)(q+ + q− + k − p+ − p−).

Then, after performing the sum over photon polarizations,
the radiative amplitudes in leading Low approximation
generate the following factors:

f rad
1 = −

q2
+(

q+ · k + M2
γ

2

)2 −
q2
−(

q− · k + M2
γ

2

)2

+
2q+ · q−(

q+ · k + M2
γ

2

) (
q− · k + M2

γ

2

) , (D.4)

f rad
2 =

p+ · q+(
p+ · k − M2

γ

2

) (
q+ · k + M2

γ

2

)
+

p− · q−(
p− · k − M2

γ

2

) (
q− · k + M2

γ

2

)
− p+ · q−(

p+ · k − M2
γ

2

) (
q− · k + M2

γ

2

)
− p− · q+(

p− · k − M2
γ

2

) (
q+ · k + M2

γ

2

) . (D.5)
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